Изобретение относится к области физико-химических технологий получения тепловой энергии, водорода и кислорода.
Известно устройство для получения тепловой энергии, водорода и кислорода при электролизе воды, содержащее корпус, в котором смонтированы низковольтные, но высокотемпературные электролитические ячейки, в которых вода разлагается на водород и кислород (Иванов В.С., Серебрянский Ф.З. Газомасляное хозяйство генераторов с водородным охлаждением.- М.-Л.: Энергоиздат, 1965, с. 107 - 111).
Недостатком этого устройства является то, что для получения водорода и кислорода используется только процесс электролитической диссоциации молекул воды и не используется процесс термической ее диссоциации.
Известно также устройство для получения тепловой энергии, водорода и кислорода, содержащее корпус, изготовленный из диэлектрического материала, со сквозным отверстием, межэлектродную камеру, патрубки для ввода и вывода рабочего раствора, анод, соединенный с положительным полюсом источника питания, и катод, соединенный с отрицательны полюсом источника питания (GB 1139614 A, 08.01.1969).
Недостатком такого устройства является использование только процесса электролитической диссоциации молекул воды.
Технический результат, достигаемый в заявленном изобретении, заключается в получении тепловой энергии путем нагрева раствора с помощью плазмы и получении водорода и кислорода путем электролитического и термического разложения воды одновременно.
Указанный технический результат достигается тем, что в устройстве для получения тепловой энергии, водорода и кислорода, содержащем корпус, изготовленный из диэлектрического материала, со сквозным отверстием, межэлектродную камеру, патрубки для ввода и вывода рабочего раствора, анод, соединенный с положительным полюсом источника питания, и катод, соединенный с отрицательным полюсом источника питания, согласно изобретению, корпус с осевым отверстием имеет нижний цилиндроконический прилив, нижнюю крышку, образующую совместно с корпусом межэлектродную камеру, разделенную цилиндроконическим приливом корпуса на сообщающиеся между собой в нижней части анодную и катодную полости, плоский кольцевой анод с отверстиями расположен в анодной полости, стержневой катод, выполненный из тугоплавкого материала, с тугоплавкой защитной втулкой вставлен в диэлектрический стержень с наружной резьбой, посредством которой он введен в межэлектродную камеру через резьбовое отверстие в нижней крышке и центрирован у входа в отверстие тугоплавкой втулки, диаметр которой меньше диаметра цилиндрического катода, патрубок для ввода рабочего раствора расположен на боковой цилиндрической поверхности нижней крышки и в средней части анодной полости, патрубки для вывода кислорода установлены в верхней части анодной полости, патрубки для вывода водорода установлены в верхней части катодной полости, патрубок для вывода парогазовой смеси установлен в сквозном осевом отверстии корпуса.
Сущность изобретения поясняется чертежом, где изображен общий вид устройства.
Устройство для получения тепловой энергии, водорода и кислорода содержит корпус 1, изготовленный из диэлектрического материала с осевым отверстием 2 и цилиндрическим приливом 3, нижнюю крышку 4, образующую совместно с корпусом нижнюю межэлектродную камеру 5, анодную 6 и катодную 7 полости, кольцевой анод 8 с отверстиями, соединенный с положительным полюсом источника питания, стержневой катод 9, соединенный с отрицательным полюсом источника питания, защищен от перегрева трубкой 10 из тугоплавкого материала и размещен в диэлектрическом стержне 11, вводимом в межэлектродную камеру 5 через резьбовое отверстие 12 крышки 4 и центрируемый у входа в отверстие втулки 13 из тугоплавкого материала, вставленной в сквозное отверстие 2 корпуса 1, патрубок 14 для ввода в устройство рабочего раствора, патрубки 15 для вывода кислорода из анодной полости, патрубки 16 для вывода водорода из катодной полости и патрубок 17 для вывода парогазовой смеси.
Диэлектрический стержень 11 вместе с катодом 9 за счет резьбового отверстия 12 в крышке 4 и своей наружной резьбы имеет возможность регулировать величину зазора S между цилиндрическим катодом 9 и отверстием во втулке 13 из тугоплавкого материала. Катод 9 фокусируется у входа в отверстие втулки 13 на величину S = 0,2...1,0d (где d - диаметр отверстия во втулке 13). Соотношение диаметра D цилиндрической части катода 9 и диаметра d отверстия втулки 13 определяется коэффициентом центрирования катода Kc, изменяющимся в пределах 1,3 < Kc < 1,7.
Устройство для получения тепловой энергии, водорода и кислорода работает следующим образом.
Анодную 6 и катодную 7 полости межэлектродной камеры 5 заполняют слабым раствором щелочи или кислоты через патрубок 14 и устанавливают необходимый расход раствора. Затем устройство подключают к электрической сети и постепенно повышают напряжение до появления устойчивой плазмы. Кислород, выделившийся у анода 8, поднимается в верхнюю часть анодной полости 6 и удаляется через патрубки 15.
Газообразный молекулярный водород, формирующийся на границе плазма - жидкость частично собирается в верхней части катодной полости 7 и выходит через патрубки 16, а основная часть парогазовой смеси выходит через патрубок 17, введенный в осевое отверстие 2.
Под действием электрического поля между многократно уменьшенной площадью катода по отношению к площади анода формируется начальный, сфокусированый на катод поток ионов щелочного металла и протонов. Имея запас кинетической энергии при движении к катоду, ионы щелочного металла и первичные протоны выбивают протоны атомов водорода из молекул воды H2O и ионов гидроксиния H3O+. Достигнув катода, протоны приобретают электроны и образуют атомы водорода, излучая фотоны, которые формируют плазму атомарного водорода с температурой 5000. . .10000oC. Энергия этой плазмы и служит источником термической диссоциации воды на водород и кислород и источником дополнительной энергии, наличие которой легко фиксируется по энергии нагретого раствора, испарившейся воды и собранных газов. Одновременно с этим у анода идет электролитический процесс выделения кислорода.
Поскольку диаметр отверстия во втулке 13 меньше диаметра цилиндрического катода, то это увеличивает площадь активного контакта раствора с катодом и за счет этого повышается эффективность устройства.
Таким образом, водородная плазма у катода является источником тепловой энергии, передаваемой водному раствору, и источником атомарного и молекулярного водорода и кислорода одновременно.
Эффективность технологического процесса зависит от многих факторов. Главными из этих факторов являются коэффициент центрирования Kc катода 9 и коэффициент его фокусировки S. Величина коэффициента центрирования определяется по формуле
где d - диаметр сквозного отверстия 3,
D - диаметр катода 9.
Экспериментально установлено, что оптимальная величина коэффициента центрирования Kc катода 9 находится в пределах 1,3 < Kc < 1,7, а коэффициент фокусировки S, определяющий величину входа катода 9 в отверстие втулки 13, изменяется в пределах (0,2 < S < 1,0d).
Эффективность устройства определяет общий показатель эффективности K0, учитывающий электрическую энергию Ee, вводимую в устройство, тепловую энергию Et, которая аккумулируется в нагретом водном растворе и водяном паре, и энергию Eg, содержащуюся в выделившихся газах: водороде и кислороде.
где Ee - электрическая энергия,
Et - тепловая энергия,
Eg - энергия, содержащаяся в выделившихся газах.
Экспериментально установлено, что при учете только энергии, содержащейся в нагретом водном растворе и водяном паре, показатель эффективности принимает значения K0 = 1,5 ± 1,7. Приближенный учет выделившихся газов повышает этот показатель до 2,2 ± 0,2.
Устройство относится к физико-химическим технологиям получения тепла, водорода и кислорода. Устройство имеет корпус с осевым отверстием и цилиндроконическим приливом и нижнюю крышку, которые образуют совместно с корпусом межэлектродную камеру с сообщающимися между собой анодной и катодной полостями, кольцевой анод с отверстиями расположен в анодной полости, а стержневой катод вставлен в диэлектрический стержень, который вводится в межэлектродную камеру через резьбовое отверстие в нижней крышке. Это дает возможность центрировать рабочую часть катода относительно отверстия втулки из тугоплавкого материала, вставленной в сквозное осевое отверстие корпуса. При этом диаметр отверстия втулки меньше диаметра катода. Патрубок для ввода рабочего раствора расположен в анодной камере, патрубки для вывода кислорода подведены к верхней части анодной полости, патрубки для вывода водорода подведены к верхней части катодной полости, патрубок для вывода парогазовой смеси установлен в осевом отверстии корпуса. Данная установка позволяет получить тепловую энергию путем нагрева раствора с помощью плазмы и получить водород и кислород путем электролитического и термического разложения воды одновременно. 1 ил.
Устройство для получения тепловой энергии, водорода и кислорода, содержащее корпус, изготовленный из диэлектрического материала, со сквозным отверстием, межэлектродную камеру, патрубки для ввода и вывода рабочего раствора, анод, соединенный с положительным полюсом источника питания, и катод, соединенный с отрицательным полюсом источника питания, отличающееся тем, что корпус с осевым отверстием имеет нижний цилиндроконический прилив, нижнюю крышку, образующую совместно с корпусом межэлектродную камеру, разделенную цилиндроконическим приливом корпуса на сообщающиеся между собой в нижней части анодную и катодную полости, плоский кольцевой анод с отверстиями расположен в анодной полости, стержневой катод, выполненный из тугоплавкого материала, с тугоплавкой защитной втулкой вставлен в диэлектрический стержень с наружной резьбой, посредством которой он введен в межэлектродную камеру через резьбовое отверстие в нижней крышке и центрирован у входа в отверстие тугоплавкой втулки, диаметр которого меньше диаметра цилиндрического катода, патрубок для ввода рабочего раствора расположен в средней части анодной полости, патрубки для вывода кислорода установлены в верхней части анодной полости, патрубки для вывода водорода установлены в верхней части катодной полости, патрубок для вывода парогазовой смеси установлен в сквозном осевом отверстии корпуса.
Устройство для обработки деталей | 1982 |
|
SU1139614A1 |
ВЫСОКОВОЛЬТНАЯ ПРОВОДНАЯ СИСТЕМА ПРОДОЛЬНОГО ЭЛЕКТРОСНАБЖЕНИЯ, СОВМЕСТИМАЯ С ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ КОНТАКТНОЙ СЕТИ ЭЛЕКТРИЧЕСКИХ ЖЕЛЕЗНЫХ ДОРОГ, ЭЛЕКТРИФИЦИРОВАННЫХ НА ПЕРЕМЕННОМ ТОКЕ | 2004 |
|
RU2286891C2 |
US 3446725 A, 27.05.1969 | |||
ИВАНОВ В.С., СЕРЕБРЯНСКИЙ Ф.З | |||
Газомасляное хозяйство генераторов с водородным охлаждением | |||
- М.-Л.: Энергия, 1965, с.107-111. |
Авторы
Даты
2001-05-27—Публикация
1999-06-02—Подача