Изобретение относится к области техники облучения материалов тяжелыми ионами и может быть использовано для облучения материалов на ускорителях тяжелых ионов.
Аналогом изобретения может служить устройство облучения полимерных пленок, включающее в себя лентопротяжный механизм, с помощью которого облучаемая пленка пересекает поток тяжелых ионов неоднократно [1].
В качестве прототипа рассмотрим устройство для облучения полимерных пленок при изготовлении фильтровальных мембран [2].
Устройство содержит облучательную камеру с устройством для протяжки ленты, азотные экраны, а внутри камеры по ходу пленки расположены охлаждающие агрегаты контактного типа с линиями подачи жидкого азота и устройства последующего отогрева пленки, а также узлы, регулирующие температуру пленки при облучении, при этом охлаждающий агрегат представляет собой металлический сосуд с полированной плоской или цилиндрической боковой поверхностью, контактирующей с полимерной пленкой, заполненной хладагентом, например жидким азотом или его парами, и расположенный в непосредственной близости к азотным экранам так, что образующая его цилиндрической поверхности направлена параллельно щели, через которую входит пучок ускоренных тяжелых ионов; устройство отогрева пленки представляет собой участок полированной цилиндрической металлической поверхности, контактирующей с полимерной пленкой по всей ее ширине и имеющей вмонтированный в нее подогреватель.
Недостатком данного устройства является применение сложной дорогостоящей криогенной техники, и при этом часто качество пленки не удовлетворяет предъявляемым требованиям; также недостатком упомянутых выше устройств 1,2 является значительное натекание газа, обусловленное десорбцией с поверхности пленки в вакуумную систему ускорителя, например циклотрона, в результате чего происходят электрические пробои в камере и ионопроводе в промежутках высокого напряжения: дуантах циклотрона, дефлекторе системы вывода пучка циклотрона, электростатической системы сканирования пучка в процессе облучения пленки потоком тяжелых ионов. Пробои прерывают облучение, и на облучаемом рулоне возникают необлученные или неравномерно облученные участки, что приводит к браку части производимого материала, а в некоторых случаях, когда требуется непрерывная дорожка облученного материала на всем протяжении пленки, намотанной на бобину, бракуется вся бобина. Вместе с тем, увеличение давления в объемах ионопровода и ускорителя, благодаря натеканию газа, уменьшает ток тяжелых ионов, а следовательно, производительность облучательного комплекса. Кроме того, высокое давление в ионопроводе и камере ускорителя нагружает систему откачных средств ускорителя и приводит к необходимости уменьшения периода между их профилактическими ремонтами, т.е. снижает производительность обучательного комплекса.
Целью изобретения является устранение указанных недостатков, а именно повышение качества пленки и производительности всего облучательного комплекса за счет подавления натекания десорбированного газа с поверхности облучаемой пленки лентопротяжного механизма.
Цель достигается благодаря тому, что в устройстве для облучения полимерных пленок ускоренными тяжелыми ионами, включающем вакуумную камеру с лентопротяжным механизмом, узел облучения, подающую бобину, ведущие ролики, приемную бобину, привод ведущих роликов и бобин, вакуумная камера разделена на два объема вакуумплотной перегородкой, имеющей два щелевых канала, при этом размеры щелевого канала выбирают в зависимости от допустимого натекания десорбированного газа с поверхности в зону облучательного узла, которое выражается формулой:
Q4 = 4•F•P2, см3 Торр/с,
где: Q4 - полное натекание через 4 щели, образованные пленкой и стенками щелевых каналов и проходящей через него полимерной пленкой,
P2 - перепад давления на щелевом канале, Торр,
F - пропускная способность прямоугольного щелевого канала с сечением, образуемым стенкой щелевого канала и пленкой, проходящей на равных расстояниях a от стенок щелевого канала, определяемая формулой:
F=1,65•104•К(1)•a•b, см3/с,
где: K(1) - безразмерный коэффициент уменьшения пропускной способности в зависимости от длины l щелевого канала
К(1)=а/l ln (l/a),
a - высота щели, образованной пленкой и стенкой щелевого канала, см,
b - ширина щелевого канала, см,
l - длина щелевого канала, см.
Предложенное устройство представлено на фиг. 1, где
1 - ионопровод ускорителя,
2 - пучок ускоренных тяжелых ионов,
3 - вакуумплотная перегородка с проходящими через нее щелевыми каналами, через которые облучаемая пленка с питающей бобины входит в облучательный узел и затем идет на приемную бобину,
4 - стенка вакуумной камеры облучающего устройства,
5 - питающая бобина,
6 - прижимной валик,
7 - ведущий валик,
8,9,15,16 - направляющие валики,
10,11,13 - стенки щелевого канала,
12 - полимерная пленка в щелевом канале,
14 - валик с полимерной пленкой, на которую падает поток ускоренных тяжелых ионов,
17 - приемная бобина,
18,19 - турбомолекулярные высоковакуумные насосы,
20,21 - форвакуумные насосы,
cd - направление движения пленки.
На фиг. 2 представлены сечения ионопровода по А-А и щелевого канала по В-В,
22 - ширина сечения щелевого канала, равная b,
23 - высота щелевого канала, равная 2a.
Пленка 12 делит канал на два канала, высотой а каждый (обычно толщиной пленки можно пренебречь).
Сечение по А-А характерно размером К от нескольких до десятков см; величина H>b, ширины облучаемой пленки.
На фиг. 3 представлено аксонометрическое изображение щелевого канала с прямоугольным сечением. Здесь 2a - высота щелевого канала, b - ширина щелевого канала, l - длина щелевого канала.
Работа устройства происходит следующим образом (см. фиг. 1.).
Облучательная установка заполняется воздухом до атмосферного давления; открываются ее уплотняющие устройства, лентопротяжный механизм заряжается полимерной пленкой требуемой ширины и толщины. При этом устанавливают бобину с пленкой в положение 5 и пропускают пленку через ведущие валики 6,7, направляющие валики 8,9, щелевой канал к валику 14 облучательного узла и от валика 14 через щелевой канал и направляющие валики 15,16 к приемной бобине 17. Затем форвакуумными насосами 20, 21 откачивают камеру облучательного устройства до вакуума, обеспечивающего эффективную работу турбомолекулярных насосов 18, 19. После включения насосов 18, 19, откачки объемов лентопротяжного механизма и облучательного узла до высокого вакуума соединяют ионопровод ускорителя с облучательным узлом, включают лентопротяжный механизм и начинают облучение пленки. При этом источник десорбции газа - открытая, площадью 1 м2, поверхность пленки - практически целиком находится в объеме лентопротяжного механизма, где давление P2 значительно выше, чем давление P1 в объеме облучательного узла, благодаря наличию щелевых каналов, таких, чтобы натекание из объема лентопротяжного механизма в объем облучательного узла было бы незначительным и давало возможность поддерживать с помощью стандартного турбомолекулярного насоса в объеме облучательного узла вакуум ≅10-6 Торр, не влияющий на работу устройств ускорителя и ионопровода с высокой напряженностью электрического поля. Давления Р1 и P2 в процессе облучения пленки имеют характерные значения 10-6 и 10-4 Торр, соответственно при использовании стандартных откачивающих насосов. Поверхность пленки в облучательном узле составляет 2-3% от поверхности пленки в объеме лентопротяжного механизма. Кроме того, пленка попадает в объем облучательного узла в значительной степени обезгаженной. Поэтому давление в объеме облучательного узла значительно ниже, чем в объеме лентопротяжного механизма. Максимальная толщина полимерной пленки, облучаемой тяжелыми ионами в непрерывном режиме для производства трековых мембран и других изделий (обычно 10-20 мкм), но не более 40-50 мкм. Поэтому щелевой зазор канала, связывающего объемы облучательного узла и лентопротяжного механизма, может быть высотой 2a≥50 мкм, например 0,1 мм. При ширине b ~ 400 мм и длине 1 ~ 100 мм пропускная способность F щелевого канала с прямоугольным сечением гарантирует поддержание высокого вакуума в облучательном узле и, следовательно, в вакуумной системе ускорителя. В практически важных случаях в рассматриваемом устройстве P2>>P1 и справедливо соотношение F= Q/P2 или Q = F•P2 для одной щели, а для всех четырех щелевых каналов устройства полное натекание Q4 = 4•F•P2 см3 Торр/с.
F=1,65•104•К(l)•а•b см3/с, для воздуха при температуре 25oC. При этом
К(l)=а/l ln (l/a).
Пример реализации. Величина десорбции D с открытой поверхности полимерной пленки площадью S=1 м2 в объеме лентопротяжного механизма при температуре 25oC не превышает 100 см3 Торр/с. Таким образом, с поверхности пленки лентопротяжного механизма поступает 106 см3/с газа и давление в его вакуумном объеме P2=10-4 Торр поддерживает стандартный турбомолекулярный насос. Однако в объеме облучательного узла, соединенного ионопроводом с объемом ускорителя, давление должно быть ≅10-6 Торр. Такое давление мог бы поддержать насос производительностью 107 см3/л, но его входной патрубок слишком велик и для него не хватило бы места для его стыковки у торцов вакуумной камеры облучательной установки.
Если разделить камеру перегородкой, включающей в себя щелевые каналы, на два объема - объем облучательного узла и объем лентопротяжного механизма, и использовать для откачки объемом два турбомолекулярных насоса производительностью 106 см3/л в интервале давлений от 10-4 до в 10-7 Торр, подсоединенные раздельно к каждому объему, то натекание из объема лентопротяжного механизма в объем облучательного узла может быть незначительным и в объеме облучательного узла будет поддерживаться давление 10-6- 10-7 Торр. Величина натекания определятся размерами щелевых каналов. Ширину щели b можно считать равной ширине облучаемой пленки, например 40 см. Высоту щели a возьмем равной 2a = 1 мм. При этом через нее свободно проходит пленка толщиной 40 мкм. Длину щелевого канала примем равной 10 см. Тогда натекание Q4 из объема лентопротяжного механизма в объем облучательного узла при P2=10-4 Торр через четыре щели, образованные стенками щелевых каналов и облучаемой полимерной пленкой, определится размерами щелевых каналов. Если использовать щелевой канал с прямоугольным сечением, то его ширину b можно принять равной ширине облучаемой пленки b=40 см, а характерная высота щели a, образованная стенкой щелевого канала и полимерной пленкой может быть принята равной 0,05 см, в такую щель проходит любой сорт облучаемой пленки, так как рулоны с пленкой толщиной > 40 мкм не облучают тяжелыми ионами. При этих условиях натекание Q из лентопротяжного механизма в объем облучательного устройства через одну щель определится как Q =F•P2 = 874,5•10-4 см3 Торр/с, стенки щелевых каналов и проходящая через них пленка всего образуют четыре канала. Таким образом, полное натекание Q4 из объема лентопротяжного механизма в объем облучательного узла оказывается весьма малым, равным Q4 = 3 500•10-4 см3 Торр/с, что, следовательно, свидетельствует о подавлении натекания газа, десорбированного с поверхности пленки лентопротяжного механизма в высоковакуумный объем ионопровода и ускорителя.
В результате реализации изобретения подавлено натекание газа от открытой поверхности облучаемой тяжелыми ионами пленки, что привело к повышению производительности и улучшению качества облученной пленки.
Литература
1. Патент США N 3529157.
2. Патент N 17777582.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ОБЛУЧЕНИЯ ПОЛИМЕРНЫХ ПЛЕНОК НА УСКОРИТЕЛЯХ ТЯЖЕЛЫХ ИОНОВ | 1998 |
|
RU2150991C1 |
СПОСОБ ПРОИЗВОДСТВА ТРЕКОВЫХ МЕМБРАН | 2009 |
|
RU2426587C1 |
Устройство для облучения полимерных пленок при изготовлении фильтровальных мембран | 1991 |
|
SU1777582A3 |
СПОСОБ И УСТРОЙСТВО ИЗГОТОВЛЕНИЯ ЯДЕРНЫХ ФИЛЬТРОВ | 2003 |
|
RU2234362C1 |
МИШЕННЫЙ УЗЕЛ ДЛЯ ИМПУЛЬСНОГО ЛИНЕЙНОГО РЕЗОНАНСНОГО УСКОРИТЕЛЯ ИОНОВ | 1993 |
|
RU2033708C1 |
ПЕРФТОРПОЛИМЕРСОДЕРЖАЩИЙ УГЛЕРОДНЫЙ ГЕМОСОРБЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2001 |
|
RU2208441C2 |
СПОСОБ ПОЛУЧЕНИЯ ПЕРФТОРПОЛИМЕРСОДЕРЖАЩЕГО МИНЕРАЛЬНОГО ГЕМОСОРБЕНТА | 1995 |
|
RU2104695C1 |
УСТРОЙСТВО ДЛЯ ОБЛУЧЕНИЯ В ЯДЕРНОМ РЕАКТОРЕ ПОЛИМЕРНОЙ ПЛЕНКИ ОСКОЛКАМИ ДЕЛЕНИЯ УРАНА | 1990 |
|
SU1819034A1 |
ИДЕНТИФИКАЦИОННЫЙ ЗАЩИТНЫЙ ЗНАК И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2000 |
|
RU2160932C1 |
СПОСОБ ТРАНСМУТАЦИИ ДОЛГОЖИВУЩИХ РАДИОАКТИВНЫХ ИЗОТОПОВ В КОРОТКОЖИВУЩИЕ ИЛИ СТАБИЛЬНЫЕ | 2000 |
|
RU2169405C1 |
Изобретение относится к технике для облучения материалов тяжелыми ионами и может быть использовано для облучения полимерных пленок на ускорителях тяжелых ионов. Устройство содержит вакуумную камеру, разделенную вакуумплотной перегородкой на два объема, один из которых включает в себя облучательный узел, а другой - лентопротяжный механизм с подающей и приемной бобинами, каждый из объемов имеет отдельный форвакуумный и турбомолекулярный насосы. В вакуумной перегородке выполнены два щелевых канала, один из которых служит для пропускания полимерной подающей бобины из объема лентопротяжного механизма к узлу облучения, а другой канал - для пропускания облученной пленки в объем лентопротяжного механизма к приемной бобине, при этом размеры щелевого канала и допустимое натекание десорбированного газа в объем облучательного узла связаны между собой математическим выражением. Достигается повышение качества пленки и производительность устройства. 3 ил.
Устройство для облучения полимерных пленок тяжелыми ионами, включающее вакуумную камеру с лентопротяжным механизмом, узел облучения, подающую бобину, ведущие ролики, приемную бобину, привод ведущих роликов и бобин, отличающееся тем, что вакуумная камера разделена вакуумплотной перегородкой на два объема, один из которых включает в себя облучательный узел, а другой - лентопротяжный механизм с подающей и приемной бобинами, каждый из объемов имеет отдельный форвакуумный и турбомолекулярный насосы, вакуумная перегородка имеет два щелевых канала, один из них служит для пропускания полимерной пленки подающей бобины из объема лентопротяжного механизма к узлу облучения, а другой канал - для пропускания облученной тяжелыми ионами пленки в объем лентопротяжного механизма к приемной бобине, при этом размеры щелевого канала и допустимое натекание десорбированного газа в объем облучательного узла связаны между собой соотношением, которое выражается формулой
Q4 = 4•F•Р2,
где Q4 - полное натекание через 4 щели, образованные пленкой и стенками щелевых каналов, см3•торр/с;
F - пропускная способность прямоугольного щелевого канала, см3/с, определяемая формулой
F = 1,65•104•K(l)•а•b,
где K(l) - коэффициент уменьшения пропускной способности за счет длины l щелевого канала, величина безразмерная
K(l) = а/l ln (l/a),
а - высота щелей, образуемых полимерной пленкой и стенками щелевого канала, см;
b - ширина щелевого канала, см;
l - длина щелевого канала, см;
Р2 - перепад давления на щелевом канале, торр.
Устройство для облучения полимерных пленок при изготовлении фильтровальных мембран | 1991 |
|
SU1777582A3 |
RU 94037155 А1, 27.07.1996 | |||
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРО-НАНОСТРУКТУРИРОВАННОГО ПОРИСТОГО СЛОЯ НА ПОВЕРХНОСТИ ТИТАНОВЫХ ИМПЛАНТАТОВ | 2018 |
|
RU2677271C1 |
DE 4106742 А1, 05.09.1991 | |||
Водозаборное сооружение | 1978 |
|
SU665049A1 |
Авторы
Даты
2001-06-20—Публикация
1999-09-21—Подача