ГАЗОДИНАМИЧЕСКИЙ ИМИТАТОР ХИМИЧЕСКОГО HF(DF) СВЕРХЗВУКОВОГО ЛАЗЕРА Российский патент 2002 года по МПК H01S3/00 

Описание патента на изобретение RU2180154C2

Изобретение относится к лазерной технике, в частности к газодинамическим имитаторам химического сверхзвукового лазера, и может быть использовано для экспериментальной доработки системы восстановления давления.

Известны газодинамические устройства, содержащие фронтовое устройство с форсунками топлива и окислителя, камеру сгорания, сверхзвуковое сопло, поджигающее устройство и контрольно-измерительную систему (см., например, патент РФ 2040701, МКИ F 02 K 3/10, 1992 г.; патент РФ 2041375, МКИ F 02 K 9/52, 1995 г. ; патент США 3546883, НКИ 60-258, 1970 г.; авторское свидетельство СССР 169948, МКИ F 23 R 3/18, 1956 г.).

Общим недостатком рассмотренных газодинамических устройств является невозможность их использования в качестве газодинамического имитатора химического сверхзвукового лазера без усовершенствования.

Задача изобретения - создание газодинамического имитатора химического сверхзвукового лазера.

Поставленная задача достигается тем, что газодинамический имитатор химического HF (DF) сверхзвукового лазера, содержащий газогенератор, включающий форсуночную головку, вставку с огневым днищем, патрубки подачи топлива и окислителя, камеру сгорания и сверхзвуковое сопло, поджигающее устройство и контрольно-измерительную систему, предлагается снабдить динамическим смесителем для приготовления окислительной смеси, камеру сгорания - снабдить внешним полым кольцевым коллектором газа-разбавителя с расположенными равномерно по кольцу струйными форсунками с возможностью подачи ими газа-разбавителя в камеру сгорания в направлении навстречу потоку.

На фиг. 1 представлен общий вид газодинамического имитатора химического сверхзвукового лазера.

На фиг.2 - общий вид газогенератора.

На фиг.3 - общий вид форсуночной головки.

На фиг.4 - общий вид динамического смесителя.

На фиг.5 - общий вид вставки с огневым днищем.

Газодинамический имитатор химического HF (DF) сверхзвукового лазера содержит (см. фиг. 1,2) динамический смеситель 1, газогенератор, обеспечивающий смешение и сгорание компонентов топлива ((O2+N2+He1)+(CH4)+He2), включающий форсуночную головку 2, вставку 3 с огневым днищем, являющуюся первой секцией камеры сгорания, камеру 4 сгорания, внешний полый кольцевой коллектор 5 газа-разбавителя и выходное сверхзвуковое сопло 6 с переходной камерой. Камера 4 сгорания выполнена в виде трубы с двумя фланцами и снабжена штуцерами 7 для подвода вторичного гелия, патрубками 8 подачи защитной завесы для свечей и штуцерами 9 для термопар. Внешний коллектор 5 снабжен патрубком подачи газа (Не2) и штуцерами 7 со струйными форсунками равномерно расположенными по кольцу и обеспечивающими подачу газа-разбавителя в камеру 4 сгорания в направлении навстречу потоку. Форсуночная головка 2 (фиг.3) предназначена для смешения и подачи в камеру 4 сгорания компонентов топлива. Она содержит задний фланец 10 с патрубком подвода окислительного газа, рассекатель 11, коллектор 12, разделяющий форсуночную головку 2 на две полости: полость горючего и полость окислительного газа. В перфорированный фланец коллектора 12 вкручены 55 струйных форсунок и уплотнены с помощью фум-ленты. Конический рассекатель 11 крепится на центральную форсунку и служит для обеспечения равномерного распределения окислительного газа по полости подачи: окислитель - по центру, горючее - по периферии. Вставка 3 (фиг.5) с огневым днищем содержит: корпус 18 в виде отрезка трубы с патрубками 8 подачи защитной смеси для свечей; штуцеры 19 установки электрических свечей зажигания, штуцер 20 отбора давления. Динамический смеситель 1 (фиг.4) обеспечивает равномерное смешение окислителя и части разбавителя и подачу полученной смеси в газогенератор. Система хранения и подачи обеспечивает подачу необходимого количества компонентов в динамический смеситель 1 и в газогенератор (не показано). В ходе пуска кислород-азотная смесь и первичный гелий подаются через сверхкритические расходные сопла в динамический смеситель, оттуда смесь поступает в газогенератор. Динамический смеситель 1 содержит корпус 14 и рассекатель 15, образующие коллектор подачи кислород-азотной смеси, направляют поток гелия к стенкам вкладыша 16, а кислород-азотную смесь радиально, что улучшает проникновение кислород-азотной смеси в гелий; патрубки 17 подачи гелия и кислород-азотной смеси. Стенки вкладыша 16 имеют 12 отверстий для вдува кислород-азотной смеси. Диаметр отверстий рассчитан так, чтобы перепад на них был равен ≈ 2 атм. На выходе из смесителя 1 осуществляется сужение потока для создания дополнительных завихрений и соответственно улучшения процесса смешения.

Газодинамический имитатор химического HF (DF) сверхзвукового лазера работает следующим образом (см. фиг.1-5).

В патрубки 17 динамического смесителя 1 подаются окислитель - кислородно-азотная смесь и разбавитель-гелий.

Соотношение расходов топлива и окислителя выбирается в соответствии с отношением G = α×n×Gт,
где Gок - массовый расход окислителя;
α- коэффициент избытка окислителя;
n - стехиометрическое соотношение;
Gт - расход топлива.

На рассекателе 15 образуется кольцевая струя разбавителя, в которую вдуваются поперечные струи окислителя, что позволяет получить смесь с высокой степенью однородности. На выходе из смесителя осуществляется сужение потока для создания дополнительных завихрений и соответственно улучшения процесса смешения. Далее смесь поступает в форсуночную головку 2 камеры 4 смешения, где происходит смешение с топливом - метан. В камере 4 сгорания происходит горение и увеличение температуры смеси. Воспламенение смеси осуществляется с помощью 2-х электрических свечей (можно использовать два пиропатрона). Окончательное доведение состава смеси до требуемых параметров происходит за счет введения разбавителя - вторичного гелия через инжекторы - струйные форсунки внешнего коллектора 5 камеры 4 сгорания. Разбавитель истекает в виде системы струй, направленных навстречу потоку продуктов сгорания и смешивающихся с ними. Далее смесь проходит через расходное сверхзвуковое сопло 6 с переходной камерой, обеспечивающее уровень давления, необходимый для нормального протекания процесса горения. При этом площадь проходного сечения F сопла выбирается из соотношения

где
G - массовый расход рабочей смеси;
То - температура смеси;
m(j,μ)- известная функция параметров рабочей смеси;
j,μ- показатель адиабаты и молекулярная масса смеси;
Рo - давление в камере сгорания.

Окончательно газодинамические параметры потока приобретают заданные значения при разгоне смеси в сверхзвуковом сопле 6 с переходной камерой.

Управление параметрами газодинамического имитатора производится путем регулирования расходов топлива (метана), окислителя и разбавителя.

Похожие патенты RU2180154C2

название год авторы номер документа
СПОСОБ МОДЕЛИРОВАНИЯ ПОТОКА ГАЗОВОЙ СМЕСИ, ИДЕНТИЧНОГО ПОТОКУ НА ВЫХОДЕ ИЗ ХИМИЧЕСКОГО HF/DF-СВЕРХЗВУКОВОГО ЛАЗЕРА, И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Борейшо Анатолий Сергеевич
  • Мальков Виктор Михайлович
  • Орлов Андрей Евгеньевич
  • Киселев Игорь Алексеевич
  • Савин Андрей Валерьевич
  • Шаталов Игорь Владимирович
RU2308134C2
СПОСОБ ПОЛУЧЕНИЯ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ СИСТЕМЫ ВОССТАНОВЛЕНИЯ ДАВЛЕНИЯ ДЛЯ ХИМИЧЕСКИХ СВЕРХЗВУКОВЫХ ЛАЗЕРОВ 2002
  • Борейшо А.С.
  • Мальков В.М.
  • Савин А.В.
  • Морозов А.В.
  • Леонов А.Ф.
  • Орлов А.Е.
  • Киселев И.А.
RU2222850C1
ГАЗОТУРБИННЫЙ АВИАЦИОННЫЙ ДВИГАТЕЛЬ И СПОСОБ ЕГО ФОРСИРОВАНИЯ 2014
  • Цейтлин Дмитрий Моисеевич
  • Болотин Николай Борисович
RU2562822C2
СПОСОБ ЗАПУСКА ГАЗОДИНАМИЧЕСКОГО ЛАЗЕРА 1991
  • Воронин Н.Г.
  • Дмитриев В.Г.
RU2089982C1
УСТРОЙСТВО ДЛЯ ЛАЗЕРНОГО ВОСПЛАМЕНЕНИЯ ТОПЛИВА В ГАЗОГЕНЕРАТОРЕ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2013
  • Цейтлин Дмитрий Моисеевич
  • Ребров Сергей Григорьевич
  • Болотин Николай Борисович
RU2527500C1
ИОННЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ И СПОСОБ ЕГО РАБОТЫ 2019
  • Болотин Николай Борисович
RU2724375C1
КОМБИНИРОВАННЫЙ ИОННЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ И КОРОНИРУЮЩИЙ ЭЛЕКТРОД 2020
  • Болотин Николай Борисович
RU2745180C1
ИОННЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ И СПОСОБ ЕГО РАБОТЫ 2019
  • Болотин Николай Борисович
RU2738136C1
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ ЗАКРЫТОГО ЦИКЛА С ДОЖИГАНИЕМ ОКИСЛИТЕЛЬНОГО И ВОССТАНОВИТЕЛЬНОГО ГЕНЕРАТОРНЫХ ГАЗОВ БЕЗ ПОЛНОЙ ГАЗИФИКАЦИИ И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2022
  • Губанов Давид Анатольевич
  • Востров Никита Владимирович
RU2801019C1
ГАЗОДИНАМИЧЕСКИЙ ТРАКТ НЕПРЕРЫВНОГО ХИМИЧЕСКОГО ЛАЗЕРА С АКТИВНЫМ ДИФФУЗОРОМ В СИСТЕМЕ ВОССТАНОВЛЕНИЯ ДАВЛЕНИЯ 2009
  • Борейшо Анатолий Сергеевич
  • Мальков Виктор Михайлович
  • Киселев Игорь Алексеевич
  • Орлов Андрей Евгеньевич
  • Шаталов Игорь Владимирович
  • Павлов Александр Семенович
RU2408960C1

Иллюстрации к изобретению RU 2 180 154 C2

Реферат патента 2002 года ГАЗОДИНАМИЧЕСКИЙ ИМИТАТОР ХИМИЧЕСКОГО HF(DF) СВЕРХЗВУКОВОГО ЛАЗЕРА

Изобретение относится к лазерной технике, в частности к газодинамическим имитаторам химического сверхзвукового лазера, и используется для экспериментальной доработки системы восстановления давления. Газодинамический имитатор химического НF(DF) сверхзвукового лазера содержит газогенератор с форсуночной головкой, вставкой с огневым днищем, патрубком подачи топлива и окислителя; камеру сгорания и сверхзвуковое сопло. Газодинамический имитатор снабжен динамическим смесителем окислительной смеси. Камера сгорания снабжена внешним полым кольцевым коллектором подачи газа-разбавителя с расположенными равномерно по кольцу струйными форсунками. Существует возможность подачи ими газа-разбавителя в камеру сгорания в направлении навстречу потоку. Технический результат изобретений - создание эффективного газодинамического имитатора химического сверхзвукового лазера. 5 ил.

Формула изобретения RU 2 180 154 C2

Газодинамический имитатор химического НF(DF) сверхзвукового лазера, содержащий газогенератор, включающий форсуночную головку, вставку с огневым днищем, патрубки подачи топлива и окислителя; камеру сгорания; сверхзвуковое сопло; поджигающее устройство и контрольно-измерительную систему, отличающийся тем, что он снабжен динамическим смесителем окислительной смеси, камера сгорания снабжена внешним полым кольцевым коллектором газа-разбавителя с расположенными равномерно по кольцу струйными форсунками с возможностью подачи в камеру сгорания газа-разбавителя в направлении навстречу потоку.

Документы, цитированные в отчете о поиске Патент 2002 года RU2180154C2

US 3546883, 15.12.1970
ХИМИЧЕСКИЙ ЛАЗЕР 1993
  • Козлов А.К.
  • Серов А.С.
RU2054771C1
DUTTON J.C
at
al
Theoretical and Experimental Investigation of the Constant Area Hyper-Supersonic injector
AI AA JORNAL, october 1982
СОПЛОВОЙ БЛОК НЕПРЕРЫВНОГО СВЕРХЗВУКОВОГО ХИМИЧЕСКОГО HF/DF-ЛАЗЕРА 1992
  • Конкин С.В.
  • Ребонэ В.К.
  • Ротинян М.А.
  • Федоров И.А.
RU2030825C1
SU 1597065 A1, 27.05.1999
US 4247833 A, 27.01.1981
US 4500997 A, 19.02.1985.

RU 2 180 154 C2

Авторы

Борейшо А.С.

Мальков В.М.

Савин А.В.

Морозов А.В.

Леонов А.Ф.

Орлов А.Е.

Киселев И.А.

Даты

2002-02-27Публикация

2000-04-06Подача