СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ПОЛИМЕРОВ Российский патент 2002 года по МПК G01N25/18 

Описание патента на изобретение RU2180440C2

Изобретение относится к измерительной технике и может быть использовано при производстве высокомолекулярных соединений, а также для прогнозирования изменения физических свойств полимеров при различных условиях эксплуатации.

Известны способы определения коэффициента теплопроводности полимеров λ (см. Годовский Ю. К. Теплофизические методы исследования полимеров. - М.: Химия, 1976, 216 с.), основанные на закономерностях стационарного и нестационарного теплового потока, в общем случае процесс передачи теплоты теплопроводностью в твердом теле сопровождается изменением температуры Т как в пространстве, так и во времени:
Т=f(х, у, z, t), (1)
где х, у, z - координаты точки; t - время.

Уравнения двухмерного температурного поля для режима стационарного:
T = f(x,y); ∂T/∂t = ∂T/∂z = 0; (2)
нестационарного:
T = f(x,y,t); ∂T/∂z = 0, ∂T/∂t ≠ 0. (3)
Уравнение (4)

дифференциальное уравнение теплопроводности (или дифференциальным уравнением Фурье) для трехмерного нестационарного температурного поля при отсутствии внутренних источников теплоты. Оно является основным при изучении вопросов нагревания и охлаждения тел в процессе передачи теплоты теплопроводностью и устанавливает связь между временным и пространственным изменениям температуры в любой точке поля. Здесь ср - удельная теплоемкость, ρ- плотность.

Главный недостаток стационарных методов является длительность установления необходимого теплового режима при каждой заданной температуре. Существующие нестационарные методы имеют одно существенное ограничение - теория этих методов предполагает слабую зависимость теплофизических характеристик от температуры. Последнее ограничивает применение нестационарных методов в области фазовых и релаксационных переходов полимеров.

Наиболее близким техническим решением к изобретению является способ определения теплопроводности материалов (см. А.с. СССР 1392475, кл. G 01 N 25/18), заключающийся в том, что воздействуют на образец линейным источником тепла, измеряют мощность источника тепла и температуру по линии воздействия в 2 момента времени. Коэффициент теплопроводности рассчитывают по формуле:

Q - линейная плотность мощности источника, Вт/м; T1, T2 - термодинамические температуры, соответствующие времени измерения τ1, τ2; b - скорость разогрева.

Недостаток метода - нечувствительность к релаксационным процессам, происходящим в исследуемом образце.

Техническим результатом изобретения является повышение информативности результатов определения коэффициента теплопроводности.

Сущность изобретения состоит к том, что помещают исследуемый материал в виде пластины толщиной d с известной площадью сечения S в конденсаторный первичный преобразователь, содержащий два измерительных электрода с одинаковой рабочей емкостью Ср, расположенных по линии распространения тепла на расстоянии l друг от друга, и нагревательное устройство; задают режим нагрева и определяют мощность нагрева Р=UI; измеряют средние квадраты напряжения электрических флуктуаций и диэлектрические характеристики: ε′- диэлектрическую проницаемость и ε″ - коэффициент диэлектрических потерь без воздействия внешнего электрического поля и по полученным данным рассчитывают коэффициент теплопроводности λ:

где k - постоянная Больцмана, ε0- электрическая постоянная; Δf - полоса частот; f - частота измерения среднего квадрата флуктуационных напряжений на зажимах соответственно первого - и второго - преобразователей; ε′, ε″ - диэлектрические проницаемость и коэффициент потерь в месте размещения первичных преобразователей; U, I - напряжение и сила тока нагревателя, задающего поток тепловой энергии.

Предложенный способ поясняется следующей блок-схемой, представленной на чертеже. Образец 1 помещается в первичный измерительный преобразователь, состоящий из потенциальных электродов 2 и 3, нагревателя 4, электромагнитного экрана 6. Нагреватель подключен к блоку питания 5, напряжение на выходе которого контролируется вольтметром 8, сила тока - амперметром 9. Средний квадрат напряжения электрических флуктуаций определяется селективным вольтметром 7. Ключ К служит для выбора электрода.

Основные теоретические положения изобретения заключаются в следующем. Поместим полимерный диэлектрик в виде пластины толщиной d в двухэлектродный конденсаторный измерительный преобразователь с дисковыми электродами. Электроды располагают друг от друга на расстоянии l. Такой объект является шумящим двухполюсником, для которого в состоянии равновесия в области частот hf<<kT: где h - постоянная Планка, может быть получено выражение для среднего квадрата напряжения на каждом из его потенциальных электродов (см. Высокомолекулярные соединения, сер. А, 1990, т. 32, с. 1560 - 1563):

Один из концов пластины нагревается. При этом в исследуемом образце создается градиент температур и начинается процесс переноса тепловой энергии. Примем следующие допущения:
1) внутренние источники теплоты отсутствуют;
2) среда, в которой распространяется тепло, однородна и изотропная;
3) используется закон сохранения энергии, который для данного случая формулируется так: разность между количеством теплоты, вошедшей вследствие теплопроводности в анализируемый образец за время dt и вышедшей из нагреваемой части за то же время, расходуется на изменение внутренней энергии рассматриваемого объема.

Коэффициент теплопроводности исследуемого образца может быть определен как:

где Р - мощность нагревателя, определяемая как P=UI. Здесь U - напряжение источника питания, I - сила тока, потребляемая нагревателем.

Определяя температуры T1, T2 по направлению распространения тепловой энергии на основе измерения средних квадратов тепловых электрических флуктуации, существующих на зажимах первичных преобразователей соответственно, и диэлектрические характеристики при данных температурах (см. патент РФ 1746281, кл. G 01 N 27/22): ε′- диэлектрическую проницаемость и ε″- коэффициент диэлектрических потерь, рассчитываем коэффициент теплопроводности λ по формуле:

где k - постоянная Больцмана; ε0- электрическая постоянная; Δf - полоса частот; f - частота измерения среднего квадрата флуктуационных напряжений па зажимах соответственно первого - и второго - преобразователей.

Предлагаемый способ определения коэффициента теплопроводности полимерных материалов позволяет существенно расширить экспериментальные возможности анализа высокомолекулярных соединений.

Похожие патенты RU2180440C2

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛИМЕРОВ 2001
  • Ивановский В.А.
RU2193188C2
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛИМЕРОВ 2005
  • Ивановский Василий Андреевич
RU2295732C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ АКТИВАЦИИ ПРОЦЕССОВ МОЛЕКУЛЯРНОЙ ПОДВИЖНОСТИ В ПОЛИМЕРАХ 2001
  • Ивановский В.А.
  • Зеленев Ю.В.
RU2216012C2
СПОСОБ ОПРЕДЕЛЕНИЯ ВРЕМЕНИ МОЛЕКУЛЯРНОЙ РЕЛАКСАЦИИ ПРОЦЕССОВ ТЕПЛОВОГО ДВИЖЕНИЯ В ПОЛИМЕРАХ 2002
  • Ивановский В.А.
  • Зеленев Ю.В.
  • Горючкин Е.А.
  • Самойлов Е.В.
RU2216013C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛИМЕРНЫХ СИСТЕМ 2006
  • Ивановский Василий Андреевич
RU2332675C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛИМЕРОВ 1998
  • Ивановский В.А.
RU2166768C2
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОЕМКОСТИ ПОЛИМЕРОВ ПРИ ПОСТОЯННОМ ДАВЛЕНИИ 1997
  • Ивановский В.А.
  • Зеленев Ю.В.
  • Отмахова Т.В.
RU2181200C2
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ 2000
  • Клебанов М.Г.
  • Обухов В.В.
  • Фесенко Т.А.
RU2192000C2
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ 1999
  • Клебанов М.Г.
  • Фесенко А.И.
RU2181199C2
СПОСОБ ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ РАСТЯЖЕНИИ ЭЛАСТОМЕРОВ 2008
  • Ивановский Василий Андреевич
RU2357236C1

Реферат патента 2002 года СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ПОЛИМЕРОВ

Изобретение относится к измерительной технике. Сущность изобретения состоит в том, что помещают исследуемый материал в виде пластины толщиной d с известной площадью сечения S в конденсаторный первичный преобразователь, содержащий два измерительных электрода с одинаковой рабочей емкостью Ср, расположенных по линии распространения тепла на расстоянии l друг от друга, и нагревательное устройство; задают режим нагрева и определяют мощность нагрева Р=UI; измеряют средние квадраты напряжения электрических флуктуаций и диэлектрические характеристики: ε′ - диэлектрическую проницаемость и ε″ - коэффициент диэлектрических потерь без воздействия внешнего электрического поля и по полученным данным рассчитывают коэффициент теплопроводности λ по приводимой формуле. Техническим результатом изобретения является повышение информативности результатов определения коэффициента теплопроводности. 1 ил.

Формула изобретения RU 2 180 440 C2

Способ определения коэффициента теплопроводности полимерных материалов, заключающийся в том, что воздействуют на образец линейным источником тепла, измеряют мощность источника тепла и температуру по линии воздействия, отличающийся тем, что помещают исследуемый материал в виде пластины толщины d с известной площадью сечения S в конденсаторный первичный преобразователь, содержащий два измерительных электрода с одинаковой рабочей емкостью Ср, расположенных по линии распространения тепла на расстоянии l друг от друга, и нагревательное устройство; задают режим нагрева и определяют мощность нагрева Р= UI; измеряют средние квадраты напряжения электрических флуктуаций и диэлектрические характеристики: ε′ - диэлектрическую проницаемость и ε″ - коэффициент диэлектрических потерь без воздействия внешнего электрического поля и по полученным данным рассчитывают коэффициент теплопроводности λ

где k - постоянная Больцмана;
ε0 - электрическая постоянная;
Δf - полоса частот;
f - частота измерения среднего квадрата флуктуационных напряжений на зажимах соответственно первого и второго преобразователей;
U, I - напряжение и сила тока нагревателя, задающего поток тепловой энергии.

Документы, цитированные в отчете о поиске Патент 2002 года RU2180440C2

Способ определения теплопроводности материалов 1986
  • Буравой Семен Ефимович
  • Литовский Ефим Яковлевич
  • Климович Андрей Викторович
  • Нефедов Константин Владимирович
SU1392475A1
ТЕРМОЗОНД ДЛЯ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОПРОВОДНОСТИ МАТЕРИАЛОВ 1997
  • Чернышов В.Н.
  • Макаров М.В.
  • Чернышова Т.И.
  • Селезнев А.В.
  • Терехов А.В.
RU2123179C1
US 4861167 А, 29.08.1989
US 5711604 А, 17.07.1998.

RU 2 180 440 C2

Авторы

Ивановский В.А.

Даты

2002-03-10Публикация

2000-01-06Подача