Изобретение относится к насосам пульсирующего действия, предназначенным для перекачивания и циркуляции крови, например, в аппаратах искусственного кровообращения (АИК).
Известны насосы перистальтического действия, в которых кровеносные шланги прижимаются к внутренней цилиндрической поверхности посредством планетарно вращающихся роликов (П.Галлети и Г.Бричер - Основы и техника экстракорпорального кровообращения М.: Медицина, 1966, с.117-123).
Известен перфузионный насос перистальтического действия (патент РФ 2101034, кл. А 61 М 1/10, F 04 В 43/12, 1995), в замкнутой полости насосной камеры которого, с разреженной газовой средой, герметично установлены по направлению бегущего магнитного поля, создаваемого блоком электромагнитов, одноразовые кровеносные шланги плоского сечения с входными и выходными каналами, а взаимодействующий с бегущим магнитным полем рабочий орган насоса, отделяющий насосную камеру от приводной камеры с газовой средой под давлением, выполнен в виде эластично-гибкой диафрагмы и упруго-гибкого ферромагнитного элемента.
Серьезным недостатком перфузионных насосов с планетарно вращающимися роликами является травма форменных элементов крови, кроме того, эксплуатационные, весовые и габаритные характеристики таких насосов не являются оптимальными.
Перфузионный насос с бегущим магнитным полем позволяет исключить травму форменных элементов крови и существенно улучшить эксплуатационные, весовые и габаритные характеристики, однако для его функционирования остается обязательной необходимость средств электропитания блока электромагнитов, создающих бегущее магнитное поле.
Технической задачей, поставленной в настоящем изобретении, является повышение надежности, расширение принципиальных возможностей насоса, в том числе исключение обязательной необходимости электроэнергии для действия его рабочего органа, при использовании такого насоса как средства искусственного кровообращения в условиях нарушенной системы электроснабжения, в полевых условиях, в условиях неотложного транспортирования пациента и в других нештатных ситуациях.
Изобретение поясняется фиг.1-4. На фиг.1 изображена принципиальная схема, а на фиг.2 показан общий вид насоса.
Быстроразъемный полый корпус насоса выполнен в виде герметично соединенных базовой и съемной его частей. Базовая часть корпуса насоса состоит из двух соосно расположенных и жестко скрепленных фланцев 1 и 2, на внутренних сторонах которых жестко укреплены постоянные магниты 3, равномерно расположенные по окружности фланцев, а полюса магнитов ориентированы по радиальным направлениям фланцев с чередующейся полярностью. На внешних полюсах постоянных магнитов укреплены ферромагнитные элементы 4, имеющие внешнюю цилиндрическую поверхность с общей для всех магнитов образующей. На общей центральной оси фланцев расположен ферромагнитный сбалансированный секторный ротор 5, замыкающий одновременно магнитные цепи нескольких смежных магнитов в зоне расположения их внутренних полюсов, имеющих вогнутую цилиндрическую форму поверхности с предельно малым зазором относительно выпуклой цилиндрической поверхности секторного ротора.
Ферромагнитные элементы внешних полюсов постоянных магнитов охвачены герметично укрепленной на фланцах 1 и 2, с помощью упругоэластичных колец 6, эластичной магниточувствительной диафрагмой 7 цилиндрической формы, которая делит внутренний объем полого корпуса на насосную камеру кольцевого сечения, с разреженной газовой средой, и приводную камеру круглого сечения, заполненную газовой средой под давлением, превышающим давление окружающей среды.
Для взаимодействия диафрагмы 7 с внешними полюсами постоянных магнитов она выполнена из материала, обладающего ферромагнитными свойствами, или из материала, пассивного к магнитному полю, но армированного тонкими упругогибкими ферромагнитными лентами 8, расположенными вдоль окружности (фиг.3-а) или вдоль образующей цилиндрической диафрагмы 7 (фиг.3-в), в один или несколько слоев.
Выполненная таким образом диафрагма совмещает функцию подвижного якоря, взаимодействующего с внешними полюсами магнитов, препятствуя их притяжению, под действием давления газовой среды на ее внутреннюю сторону, в зоне, где магнитные цепи магнитов не замкнуты секторным ротором 5, который выполнен в виде сменных цилиндров, укрепленных на шпинделе 9, установленном в подшипниках 10 и 11, укрепленных на фланцах 1 и 2, при этом внешний конец шпинделя, через гермоввод вращения 12, соединен с редуктором числа оборотов электромеханического привода (фиг.4).
Для создания необходимого давления в приводной камере насоса, на фланце 1 базовой части корпуса предусмотрено центральное отверстие с запорным клапаном манжетного типа, выполненным в виде укрепленной на фланце цилиндрической или конической пробки 13, охваченной упруго-эластичной манжетой 14, герметично укрепленной на фланце по ее периметру.
Съемная часть корпуса насоса выполнена в виде герметично охватывающей базовую его часть цилиндрической оболочки, состоящей из двух полуцилиндров 15, соединенных с помощью цилиндрического шарнира 16, ось которого параллельна центральной оси базовой части, а диаметрально противоположные концы полуцилиндров заканчиваются коробчатыми элементами 17, герметично соединенными с помощью П-образной роликовой кассеты 18.
Установленная таким образом цилиндрическая оболочка корпуса образует насосную камеру кольцевого сечени, в которой размещены соединенные в общую гибкую кассету 19 кровеносные шланги 20 плоского сечения с цилиндрическими входными и выходными каналами 21, герметично укрепленными в стенках коробчатых элементов с помощью упруго-эластичных манжет 22, герметично охватывающих эти каналы. В зоне расположения входных и выходных каналов постоянный магнит, в виду отсутствия его необходимости, заменен скобой с выпуклой цилиндрической поверхностью, аналогичной поверхностям ферромагнитных элементов постоянных магнитов.
Для создания в насосной камере разреженной газовой среды на съемной части корпуса насоса герметично укреплен запорный клапан (не показан), соединяющий полость насосной камеры с буферным вакуумным баллоном или непосредственно со средством вакуумной откачки.
Электромеханический привод (фиг.4) насоса состоит из дифференциального планетарного редуктора числа оборотов и двух электродвигателей, основного 23, сообщающего секторному ротору насоса постоянное число оборотов, и реверсивного электродвигателя 24, регулирующего скорость вращения секторного ротора, для поддерживания оптимальной частоты пульсации крови в кровеносной системе пациента. Мощность реверсивного электродвигателя в несколько раз меньше мощности основного, что весьма существенно при управлении процессом искусственного кровообращения с помощью компьютера. Дифференциальный планетарный редуктор числа оборотов выполнен в виде неподвижного фланца 25 и соосного с ним вращающегося корпуса 26 с укрепленной на внутренней его стороне солнечной шестерней и укрепленным на внешней его стороне червячным колесом 27, кинематически связанным с реверсивным электродвигателем 24.
Возможен вариант выполнения насоса с усиленным эффектом взаимодействия эластичной диафрагмы с бегущим магнитным полем, для этого постоянные магниты снабжены усиливающими их магнитный поток обмотками постоянного тока, а в приводной камере увеличено давление газовой среды.
При вынужденной необходимости вместо электромеханического привода может быть применен ручной привод в виде укрепленного на внешнем конце шпинделя секторного ротора, штурвала с вращающейся рукояткой, а в некоторых случаях электромеханический привод может быть заменен пневмоприводом, соединенным непосредственно со шпинделем секторного ротора или через редуктор числа оборотов и работающим от баллона сжатого газа через газовый редуктор.
При подготовке насоса к работе кассету со стерильно обработанными одноразовыми кровеносными шлангами герметично укрепляют в стенках коробчатых элементов съемной части корпуса насоса с помощью упруго-эластичных манжет. Для обеспечения стерильности концы входных и выходных каналов кровеносных шлангов должны быть закрыты эластичными колпачками. В зависимости от медицинских показаний пациента на шпиндель секторного ротора устанавливают сменные цилиндры с большим или меньшим углом сектора, затем герметично устанавливают и запирают, с помощью роликовой кассеты, съемную часть корпуса вместе с укрепленной в ней кассетой одноразовых кровеносных шлангов.
После этого, с помощью запорного клапана манжетного типа, расположенного на фланце приводной камеры, соединяют ее полость со средством нагнетания газовой среды и создают в ней необходимое давление, затем, с помощью запорного клапана, расположенного на стенке насосной камеры, соединяют ее полость с буферным вакуумным баллоном или непосредственно со средством вакуумной откачки и создают в ней разреженное состояние газовой среды. По окончании этого снимают защитные колпачки с концов входных и выходных каналов и соединяют их должным образом с соответствующими сосудами кровеносной системы пациента.
Наиболее существенными преимуществами, по сравнению с известными аналогами, применяемыми в медицине, являются исключение главных причин травмы форменных элементов крови благодаря возможности точного регулирования и строгого поддерживания рабочего давления на кровеносные шланги плоского сечения, равномерно распределенного по их поверхности, возможность поддерживания оптимального пульсирования крови в кровеносной системе пациента и возможность установления степени наполнения кровеносных шлангов, оперативность и удобство замены кровеносных шлангов плоского сечения, объединенных в общую гибкую кассету, и гарантированное сохранение их стерильности, вплоть до соединения с сосудами кровеносной системы пациента, возможность, при вынужденной необходимости, быстрой замены электромеханического привода насоса ручным приводом или пневмоприводом, работающим от баллона сжатого газа с газовым редуктором, улучшенные габаритные и весовые характеристики наcoca, облегчающие труд младшего и среднего медперсонала, а возможность и целесообразность компьютеризации такого насоса значительно усиливают возможности оперирующих врачей при проведении особо сложных хирургических операций.
Особое значение для перспективы реализации предложенного схемного и конструктивного решения состоит в том, что предлагаемое устройство приведено к виду, удобному для компьютеризации.
название | год | авторы | номер документа |
---|---|---|---|
ПЕРФУЗИОННЫЙ НАСОС | 1999 |
|
RU2181601C2 |
ПЕРФУЗИОННЫЙ НАСОС ПЕРИСТАЛЬТИЧЕСКОГО ДЕЙСТВИЯ | 1995 |
|
RU2101034C1 |
АППАРАТ ДЛЯ ПРИГОТОВЛЕНИЯ СТЕРИЛЬНЫХ МАЗЕЙ | 2000 |
|
RU2183952C2 |
Магнитодинамический насос объемного вытеснения | 1987 |
|
SU1707233A1 |
НАСАДОЧНЫЙ КОМПЛЕКС К МЕДИЦИНСКОЙ ГРЕЛКЕ | 2000 |
|
RU2180244C2 |
УСТРОЙСТВО ПНЕВМО- И/ИЛИ ГИДРОПРИВОДА ДЛЯ СИСТЕМ ИСКУССТВЕННОГО ПУЛЬСИРУЮЩЕГО КРОВООБРАЩЕНИЯ | 2005 |
|
RU2297850C9 |
Диафрагменный насос перистальтического типа с электромагнитным приводом | 1989 |
|
SU1707234A1 |
УСТРОЙСТВО ДЛЯ ВСПОМОГАТЕЛЬНОГО И ЗАМЕСТИТЕЛЬНОГО КРОВООБРАЩЕНИЯ | 2003 |
|
RU2242252C2 |
ИСКУССТВЕННЫЙ КЛАПАН ДЛЯ ВСПОМОГАТЕЛЬНОГО КРОВООБРАЩЕНИЯ И ИСКУССТВЕННОГО СЕРДЦА | 2003 |
|
RU2245119C2 |
ИСКУССТВЕННЫЙ ОРГАН ДЛЯ СИСТЕМ ЗАМЕСТИТЕЛЬНОГО И ВСПОМОГАТЕЛЬНОГО КРОВООБРАЩЕНИЯ | 2004 |
|
RU2267333C2 |
Насос пульсирующего действия предназначен для использования в устройствах для перекачивания и циркуляции крови в аппаратах искусственного кровообращения. В быстроразъемном полом корпусе насоса установлен эластично-гибкий магниточувствительный рабочий орган, разделяющий полость корпуса на насосную и приводную камеры. В насосной камере с разреженной газовой средой размещены объединенные в гибкую кассету эластичные кровеносные шланги плоского сечения, с входными и выходными каналами, а в приводной камере с газовой средой под давлением укреплены постоянные магниты, равномерно расположенные по окружности камеры, полюса которых ориентированы по радиальным ее направлениям с чередующейся полярностью. На центральной оси камеры расположен вращающийся ферромагнитный секторный ротор, одновременно замыкающий магнитные цепи нескольких смежных магнитов. Электромеханический привод, при вынужденной необходимости, может быть заменен ручным приводом или пневмоприводом, работающим от баллона сжатого газа. Пульсирующее действие кровеносных шлангов осуществлено с помощью бегущей магнитной волны, создаваемой вращающимся секторным ротором, которая взаимодействует с магниточувствительным эластично-гибким рабочим органом, разграничивающим две зоны давления газовой среды. Благодаря равномерно распределенному, циклически меняющемуся давлению на кровеносные шланги газовой среды исключена травма форменных элементов крови и имеется возможность поддерживания оптимального режима пульсирования крови и степени наполнения кровеносных шлангов. 4 з.п. ф-лы, 4 ил.
ПЕРФУЗИОННЫЙ НАСОС ПЕРИСТАЛЬТИЧЕСКОГО ДЕЙСТВИЯ | 1995 |
|
RU2101034C1 |
ГИДРООБЪЕМНЫЙ НАСОС, РАБОЧАЯ КАМЕРА ГИДРООБЪЕМНОГО НАСОСА | 1989 |
|
RU2037652C1 |
ПЕРИСТАЛЬТИЧЕСКИЙ НАСОС | 1994 |
|
RU2099601C1 |
ПЕРФУЗИОННЬШ НАСОС РОЛИКОВОГО ТИПА | 1972 |
|
SU422864A1 |
Электромагнитный насос перистальтического типа | 1986 |
|
SU1434138A1 |
Перфузионный насос | 1984 |
|
SU1409780A1 |
Авторы
Даты
2002-06-10—Публикация
2000-12-27—Подача