Настоящее изобретение относится к устройству и способу для расширения спектра для системы связи множественного доступа с кодовым разделением каналов (МДКР), более конкретно к устройству и способу формирования расширяющих последовательностей.
Системы мобильной связи множественного доступа с кодовым разделением каналов (МДКР) совершенствовались от действующего стандарта мобильной связи, который главным образом обеспечивает речевую услугу, до стандарта IMT-2000, который может обеспечить не только речевую услугу, но и услугу высокоскоростной передачи данных. Например, стандарт IMT-2000 может обеспечить высококачественные услуги речевой связи, передачи движущихся изображений и поиска в сети Интернет. В системах связи МДКР линии передачи между базовой станцией и мобильной станцией содержат прямую линию для передачи от базовой станции на мобильную станцию и обратную линию для передачи от мобильной станции на базовую станцию.
В системах связи МДКР в обратной линии обычно используется комплексная схема расширения на основе псевдошумового (ПШ) кода в качестве способа расширения спектра частот. Однако комплексная схема расширения на основе ПШ кода сталкивается с проблемой, когда в усилителе мощности возрастает отношение максимальной мощности к средней мощности (ОМС) под влиянием пользовательских данных. В обратной линии связи увеличение отношения максимальной мощности к средней мощности передачи вызывает так называемый подрост, описанный ниже, который влияет на конструкцию и рабочие характеристики усилителя мощности в мобильных станциях. Характеристика усилителя мощности в мобильной станции имеет линейный участок и нелинейный участок. Когда мощность передачи мобильной станции увеличивается, сигнал мобильной станции будет входить на нелинейный участок, создавая помехи в частотных зонах других пользователей, что называют явлением "подроста". Чтобы не создавать помех для частотных зон других пользователей, размер сотовой ячейки должен быть уменьшен, и мобильные станции в сотовой ячейке должны передавать сигналы на соответствующую базовую станцию при более низкой мощности передачи. Поэтому имеется потребность в способе расширения спектра частот, который уменьшает ОМС, одновременно минимизируя ухудшение характеристики частоты ошибок в битах (ЧОБ), которая влияет на работу всей системы.
Описание ПШ комплексной схемы расширения приведено ниже со ссылками на передатчик в обычной системе связи МДКР.
Фиг. 1 иллюстрирует канальный передатчик, содержащий устройство расширения спектра частот для системы связи МДКР. Как показано, канальный передатчик содержит ортогональный расширитель 101, комплексный умножитель 102, генератор 103 ПШ последовательности и блок 104 низкочастотной фильтрации и модуляции.
Как показано на фиг.1, передаваемые данные каждого канала вводятся в ортогональный расширитель 101 после канального кодирования, повторения и перемежения посредством соответствующих канальных кодеров (не показаны). Ортогональный расширитель 101 затем умножает входные канальные данные на уникальный ортогональный код, назначенный соответствующему каналу для ортогонального расширения спектра входных канальных данных. Обычно в качестве ортогональных кодов используются коды Уолша. Генератор 103 ПШ последовательностей формирует расширяющие последовательности для расширения спектра сигналов передач соответствующих каналов. Обычно в качестве расширяющих последовательностей используются ПШ последовательности. Комплексный умножитель 102 осуществляет комплексное умножение выходных сигналов ортогонального расширителя 101 на расширяющие последовательности с выходов генератора 103 ПШ последовательностей, для формирования комплексных расширенных сигналов. Блок 104 низкочастотной фильтрации и модуляции фильтрует в основной полосе комплексные расширенные сигналы, выдаваемые из комплексного умножителя 102, и затем преобразует отфильтрованные в основной полосе сигналы в РЧ (радиочастотные) сигналы.
На фиг. 2 показана подробная блок-схема, иллюстрирующая канальный передатчик по фиг.1 для обратной линии связи.
Как показано на фиг.2, передаваемые данные каждого канала подвергаются кодированию, повторению, канальному перемежению и двоичному преобразованию таким образом, чтобы сигнал "0" преобразовывался в "+1" и сигнал "1" в "-1" перед их вводом в соответствующий канал. Данные соответствующих каналов умножаются на уникальные ортогональные коды в умножителях 111, 121, 131 и 141. Согласно фиг.2, канальные передатчики включают в себя передатчик канала управления, передатчик дополнительного канала и передатчик основного канала. Как указано выше, обычно в качестве ортогональных кодов, которые расширяют соответствующие каналы, используются коды Уолша. Ортогонально расширенные данные канала управления, дополнительного канала и основного канала умножаются на коэффициенты усиления, соответствующие каждому каналу, от первого до третьего, с помощью контроллеров 122, 132 и 142 усиления. Канальные данные суммируются двоичными сумматорами 112 и 133 и затем вводятся в комплексный умножитель 102. Здесь выходные сигналы двоичных сумматоров 112 и 133 будут называться "канальными данными".
Комплексный умножитель 102 умножает выходные сигналы сумматоров 112 и 133 на расширяющие коды для осуществления расширения спектра. Как сказано выше, ПШ коды с выхода генератора 103 ПШ последовательностей используются в качестве расширяющих кодов. ПШ коды, вводимые в комплексный умножитель 102, имеют частоту, равную частоте следования элементов кода, и могут иметь значение, состоящее из "+1" и "-1". Если не указано иное, предполагается, что ПШ коды имеют значение, состоящее "+1" и "-1".
Что касается комплексного умножителя 102, канальные данные с выхода сумматора 133 подаются в умножители 123 и 134. Кроме того, расширяющий код ПШi с выхода генератора 103 ПШ последовательностей подается в умножители 113 и 123, а расширяющий код ПШq с выхода генератора 103 ПШ последовательностей подается в умножители 134 и 143. Выходные сигналы умножителей 113 и 134 вычитаются один из другого в сумматоре 114 и затем подаются в первый фильтр 115 нижних частот; а выходные сигналы умножителей 123 и 143 суммируются один с другим в сумматоре 135 и затем подаются во второй фильтр 136 нижних частот.
Действительный сигнал с выходов двоичного сумматора 114 вводится в первый фильтр 115 нижних частот, а мнимый сигнал вводится во второй фильтр 136 нижних частот. Выходные сигналы фильтров 115 и 136 нижних частот регулируются по усилению с помощью соответственно четвертого и пятого контроллеров 116 и 137 коэффициентов передачи, затем модулируются, суммируются и передаются через канал передачи. Блок 104 низкочастотной фильтрации и модуляции осуществляет фильтрацию нижних частот и модулирует выходные данные двоичных сумматоров 114 и 135 и затем выводит модулированные данные из двоичного сумматора 118.
Было предложено несколько способов для уменьшения ОМС сигналов, выводимых из первого и второго фильтров 115 и 136 нижних частот. Эти способы основаны на том, каким образом генератор 103 ПШ последовательностей формирует расширяющие коды ПШi и ПШq. Вообще отношение максимальной мощности к средней мощности ОМС зависит от пересечений нулевого уровня, которые возникают, когда знаки ПШi и ПШq одновременно изменяются, и от состояния фиксации фазы, которое возникает, когда знаки ПШi и ПШq не изменяются. Более конкретно пересечения нулевого уровня (ПНУ) возникают, когда, например, первоначальное состояние в первом квадранте переходит к третьему квадранту, вызывая сдвиг по фазе на π. Кроме того, состояние фиксации фазы возникает, когда, например, первоначальное состояние в первом квадранте остается в первом квадранте, что не вызывает сдвига по фазе.
Как сказано выше, при обычном расширении с использованием квадратурной фазовой манипуляции (КФМ) фаза формируемых расширяющих кодов может переходить из первого квадранта в любой из первого, третьего и четвертого квадрантов в соответствии с величиной ПШ кодов. Согласно этому при использовании обычного способа формирования расширяющих кодов ОМС характеристика может ухудшаться из-за явления пересечения нулевого уровня и явления фиксации фазы. Поэтому в системе связи МДКР при расширении спектра ОМС увеличивается в зависимости от ПШi и ПШq.
Задачей настоящего изобретения является создание устройства и способа формирования расширяющей последовательности, которая может уменьшить отношение максимальной мощности к средней мощности без ухудшения ЧОБ в системе связи МДКР.
Также задачей настоящего изобретения является создание устройства и способа чередующегося формирования ПШ последовательности с использованием КФМ и дифференциальной фазовой манипуляции (ДФМ) со сдвигом по фазе на π/2 в качестве расширяющей последовательности в системе связи МДКР.
Еще одной задачей настоящего изобретения является создание устройства и способа формирования ПШ последовательности с КФМ, π/2-ДФМ и с пересечением нулевого уровня или с фиксацией фазы и сдвигом по фазе в системе связи МДКР.
Также задачей настоящего изобретения является создание устройства и способа формирования расширяющей последовательности, которая поочередно осуществляет ДФМ сдвиг по фазе и КФМ сдвиг по фазе посредством смешивания ПШ последовательности с конкретным ортогональным кодом в системе связи МДКР.
Также задачей настоящего изобретения является создание устройства и способа формирования расширяющей последовательности с использованием ДФМ и КФМ со сдвигом по фазе посредством смешивания сформированной ПШ последовательности с предшествующей расширяющей последовательностью и формирования расширяющей последовательности, которая поочередно осуществляет сдвиг по фазе ДФМ и сдвиг по фазе КФМ посредством выбора сформированной расширяющей последовательности в системе связи МДКР.
Также задачей настоящего изобретения является создание устройства и способа формирования расширяющей последовательности, которая повторяет закон сдвига по фазе КФМ, сдвига по фазе ДФМ, пересечения нулевого уровня или фиксации (ПНУФ), сдвига по фазе ДФМ посредством смешивания ПШ последовательности с конкретным ортогональным кодом в системе связи МДКР.
Еще одной задачей настоящего изобретения является создание устройства и способа для формирования расширяющей последовательности со сдвигом по фазе КФМ, сдвигом по фазе ДФМ, сдвигом по фазе на 270o или 0o посредством смешивания сформированной ПШ последовательности с предшествующей расширяющей последовательностью, и формирования расширяющей последовательности, которая повторно осуществляет сдвиг по фазе КФМ, ДФМ и пересечения нулевого уровня или фиксацию и ДМФ посредством выбора сформированной расширяющей последовательности в системе связи МДКР.
Также задачей настоящего изобретения является создание устройства и способа попеременного формирования ПШ последовательности с использованием КФМ и ДФМ со сдвигом по фазе на π/2 в качестве расширяющей последовательности, и расширения/сужения по спектру частот канального сигнала с использованием сформированной расширяющей последовательности в системе связи МДКР.
Еще одной задачей настоящего изобретения является создание устройства и способа формирования ПШ последовательности с использованием КФМ, ДФМ со сдвигом по фазе на π/2, пересечения нулевого уровня или фиксации со сдвигом по фазе в качестве расширяющего кода, и расширения/сужения канального сигнала с использованием сформированной расширяющей последовательности в системе связи МДКР.
Вышеуказанные результаты достигаются в соответствии с изобретением в устройстве для формирования расширяющих кодов для системы связи МДКР, содержащем генератор ПШ последовательностей для формирования ПШi и ПШq последовательностей, генератор ортогональных кодов для формирования первого и второго ортогональных кодов, которые осуществляют переходы из состояния ДФМ с интервалами по меньшей мере в два элемента кода; и генератор расширяющих кодов для формирования расширяющих кодов Ci и Cq посредством смешивания ПШi и ПШq последовательностей с первым и вторым ортогональными кодами, так что текущая фаза расширяющих кодов Ci и Cq поочередно формирует переходы из состояний КФМ и ДФМ по отношению к фазе предшествующих расширяющих кодов Ci и Cq.
Вышеуказанные и другие задачи, признаки и преимущества настоящего изобретения поясняются в последующем подробном описании, иллюстрированном чертежами, на которых показано следующее:
фиг. 1 - блок-схема, иллюстрирующая канальный передатчик для системы связи МДКР;
фиг.2 - подробная блок-схема канального передатчика обратной линии связи для системы связи МДКР;
фиг. 3-6 - диаграммы, иллюстрирующие соответственно переход для базовых состояний для пересечения нулевого уровня, фиксации, +π/2-ДФМ и -π/2-ДФМ;
фиг. 7 - блок-схема, иллюстрирующая схему формирования расширяющей последовательности с использованием π/2-ДФМ для устройства расширения спектра в системе связи МДКР;
фиг. 8 - блок-схема, иллюстрирующая схему формирования расширяющих последовательностей с использованием КФМ, π/2-ДМФ для устройства расширения спектра в системе связи МДКР;
фиг. 9 - временная диаграмма, иллюстрирующая формирование расширяющих последовательностей на основе КФМ, π/2-ДФМ с использованием схемы по фиг.8;
фиг. 10 - временная диаграмма, показывающая переходы из состояний КФМ, π/2-ДФМ в схеме формирования расширяющих последовательностей на основе КФМ, π/2-ДФМ;
фиг. 11 - временная диаграмма, показывающая переходы из состояний π/2-ДФМ, КФМ в схеме формирования расширяющих последовательностей на основе π/2-ДФМ, КФМ;
фиг. 12 - временная диаграмма, показывающая переходы из состояний π/2-ДФМ, КФМ, когда расширяющая последовательность формируется с опережением в один элемент кода в системе связи МДКР;
фиг. 13 - временная диаграмма, показывающая переходы из состояний π/2-ДФМ, КФМ, когда расширяющая последовательность формируется с задержкой в один элемент кода в системе связи МДКР;
фиг. 14 - блок-схема генератора расширяющего кода, который осуществляет переходы из состояний Д-К, используя задержку в один элемент кода в соответствии с вариантом осуществления настоящего изобретения в системе связи МДКР;
фиг. 15 - блок-схема генератора расширяющего кода, который осуществляет переходы из состояний Д-К, используя задержку в один элемент кода в соответствии с другим вариантом осуществления настоящего изобретения в системе связи МДКР;
фиг. 16 - блок-схема генератора Д-К расширяющего кода в соответствии с вариантом осуществления настоящего изобретения в системе связи МДКР;
фиг. 17 - временная диаграмма генератора Д-К расширяющего кода в соответствии с вариантом осуществления настоящего изобретения в системе связи МДКР;
фиг. 18 - блок-схема генератора Д-К расширяющего кода в соответствии с другим вариантом осуществления настоящего изобретения в системе связи МДКР;
фиг.19 - блок-схема, иллюстрирующая схему формирования расширяющего кода посредством комбинирования КФМ, ДФМ и пересечения нулевого уровня или фиксации в соответствии с вариантом осуществления настоящего изобретения в системе связи МДКР;
фиг. 20А - блок-схема, иллюстрирующая генератор К-Д - П-Ф расширяющего кода в соответствии с вариантом осуществления настоящего изобретения в системе связи МДКР;
фиг. 20В - диаграмма, иллюстрирующая изменение символов в единицах времени по отношению к выходу прореживателя по фиг.20А;
фиг. 21А - блок-схема, иллюстрирующая генератор К-Д - П-Ф расширяющего кода в соответствии с другим вариантом осуществления настоящего изобретения в системе связи МДКР;
фиг. 21В - диаграмма, иллюстрирующая изменение символов в единицах времени по отношению к выходу прореживателя по фиг.21А;
фиг. 22 - блок-схема, иллюстрирующая процедуру формирования расширяющей последовательности в соответствии с вариантом осуществления настоящего изобретения в системе связи МДКР.
Ниже описан предпочтительный вариант со ссылками на чертежи. В последующем описании хорошо известные функции или конструкции подробно не описываются в целях наглядности описания сущности изобретения.
Ниже описаны характеристики переходных состояний расширяющего кода. Для удобства предполагается, что начальное состояние расширяющего кода находится в первом квадранте. Фиг. 3-6 иллюстрируют базовые переходы состояний, при этом фиг.3 относится к пересечению нулевого уровня. Фиг.4 - к фиксации фазы. Фиг. 5 иллюстрирует +π/2-ДФМ и фиг.6 иллюстрирует -π/2-ДФМ. Вышеуказанные переходы состояний могут быть осуществлены различными способами.
Обычное КФМ расширение (здесь обозначаемое для краткости "К") осуществляется без запоминания; другими словами, переход в настоящее состояние может быть осуществлен в каждый квадрант, независимо от предшествующего состояния. Например, полагая, что предшествующее состояние соответствует (1, 1) в первом квадранте, настоящее состояние может соответствовать (1, 1) в первом квадранте, (-1, 1) во втором квадранте, (-1, -1) в третьем квадранте или (1, -1) в четвертом квадранте.
Явление пересечения нулевого уровня, возникающее, когда расширяющие последовательности, формируемые генератором расширяющего кода, одновременно изменяются по знаку, и явление фиксации, возникающее, когда не изменяется ни один знак расширяющих последовательностей, вызывает ухудшение характеристики ОМС. Поэтому в системе связи МДКР можно улучшить характеристику ОМС за счет подавления явлений пересечения нулевого уровня и фиксации расширяющих кодов Сi и Cq во время расширения. В одном варианте осуществления настоящего изобретения предлагается первый способ, который поочередно осуществляет КФМ и ДФМ сдвиги по фазе, чтобы подавить явления пересечения нулевого уровня и фиксации расширяющей последовательности. После этого, хотя в КФМ может возникать любой сдвиг по фазе в любое состояние, как показано на фиг.3÷6, затем осуществляется сдвиг по фазе ДФМ, что дает возможность предотвратить пересечения нулевого уровня и фиксацию. Во втором способе повторяется конфигурация КФМ, ДФМ пересечения нулевого уровня или фиксации и сдвиг по фазе ДФМ для расширяющей последовательности. Используя вышеуказанные два способа, можно предотвратить явления пересечения нулевого уровня и фиксации расширяющей последовательности и подавить непрерывное пересечение нулевого уровня или фиксацию.
Прежде всего, будет дано описание первого способа формирования расширяющей последовательности в соответствии с возможным вариантом осуществления настоящего изобретения.
Фиг. 7 иллюстрирует схему формирования расширяющей последовательности на основе ±π/2-ДФМ (обозначаемой далее для краткости "Д") с использованием ортогонального кода в системе связи МДКР.
Как показано на фиг.7, умножитель 211 умножает ортогональный код OC1 на ПШ код для формирования расширяющего кода Ci, и умножитель 212 умножает ортогональный код ОС2 на ПШ код для формирования расширяющего кода Cq. Если ПШ кодом является +1, -1, -1, +1, -1, и начальными величинами ортогональных кодов OC1 и ОС2 являются обе +1, то умножитель 211 выводит +1, -1, -1, +1, -1, а умножитель 212 выводит +1, +1, -1, -1, -1. Поэтому комбинированными выходными сигналами (Ci, Cq) умножителей 211 и 212 становятся (+1, +1), (-1, +1), (-1, -1), (+1, -1), (-1, -1), так что переходное состояние расширяющих кодов возникает в первом квадранте, втором квадранте, третьем квадранте, четвертом квадранте и третьем квадранте, вызывая каждый раз ±π/2 сдвиг по фазе.
Фиг. 8 иллюстрирует схему формирования расширяющей последовательности на основе КФМ, π/2-ДФМ в устройстве расширения спектра для системы связи МДКР.
Как показано на фиг.8, двукратный прореживатель 222 прореживает ПШi и умножитель 223 умножает ортогональный код ОС2 на выходной сигнал 2-прореживателя 222. Умножитель 221 умножает ортогональный код OCi на ПШq для формирования расширяющего кода Сi, и умножитель 224 умножает выходной сигнал умножителя 223 на ПШq для формирования расширяющего кода Cq.
На фиг.9 показана временная диаграмма расширяющей последовательности на основе КМФ, π/2-ДФМ по схеме, показанной на фиг.8. Как показано на фиг.8, начальными величинами ортогональных кодов OC1 и ОС2 является +1. На фиг.9 ссылочная позиция 311 представляет ПШi, а ссылочная позиция 312 обозначает ПШi выходной сигнал 2-прореживателя 222, 313 - выходной сигнал умножителя 223, 314 - ПШq, 315 -расширяющая последовательность Ci с выхода умножителя 221, 316 - расширяющая последовательность Cq с выхода умножителя 224 и 317 - переходное состояние расширяющих кодов.
Как показано на фиг. 8 и 9, выходной сигнал умножителя 221 и выходной сигнал умножителя 224 формируют расширяющие коды Ci и Cq соответственно. Исходя из представлений кодов 315, 316 и 317, расширяющие коды Ci и Cq становятся (+1, +1), (-1, +1), (-1, -1), (+1, -1), (+1, +1), (-1, +1) (+1, -1), (+1, +1) (1, -1), (-1, +1),(+1, -1),(+1, +1),(+1, +1),(-1, +1), (+1, +1), (+1, -1), так что переходы состояний расширяющих кодов соответствуют следующему: от начального состояния в первый квадрант (К переход), второй квадрант (Д переход), третий квадрант (К переход), четвертый квадрант (Д переход), первый квадрант (К переход), второй квадрант (Д переход), четвертый квадрант (К переход), первый квадрант (Д переход), третий квадрант (К переход), второй квадрант (Д переход), четвертый квадрант (К переход), первый квадрант (Д переход), первый квадрант (К переход), второй квадрант (Д переход), первый квадрант (К переход) и четвертый квадрант ( Д переход). То есть расширяющие коды, сформированные генератором расширяющих кодов на фиг.8, осуществляют повторный переход из состояния между КФМ и π/2-ДФМ, как показано ссылочной позицией 317 на фиг.9.
На фиг. 10 показана временная диаграмма канальных выходных данных ортогонального расширителя и выходной сигнал генератора расширяющих кодов, осуществляющего переходы К-Д состояний. На фиг.10 ссылочная позиция 411 относится к канальным выходным данным ортогонального расширителя, которые подаются на вход комплексного умножителя, а ссылочная позиция 412 относится к расширяющим кодам с выхода генератора расширяющих кодов. Как показано на фиг. 10, расширяющий код, осуществляющий переход состояния КФМ, вводится от генератора расширяющих кодов в момент времени, когда канальные данные вводятся в комплексный умножитель на основе опорного времени.
На фиг. 11 - показана временная диаграмма канальных выходных данных ортогонального расширителя и выходной сигнал генератора расширяющих кодов, осуществляющего переходы Д-К состояний. На фиг.11 ссылочная позиция 421 относится к канальным выходным данным ортогонального расширителя, которые подаются на вход комплексного умножителя, и ссылочная позиция 422 относится к расширяющим кодам с выхода генератора расширяющих кодов. Как показано на фиг. 11, расширяющий код, осуществляющий переход состояния π/2-ДФМ, вводится от генератора расширяющих кодов в момент времени, когда канальные данные вводятся в комплексный умножитель на основе опорного времени.
Поэтому можно реализовать генератор расширяющих кодов для формирования Д-К расширяющей последовательности по фиг.11, используя тот же генератор расширяющих кодов для формирования К-Д расширяющих последовательностей по фиг. 10. Первым способом осуществления является задержка или опережение канальных данных на один элемент кода на основе опорного времени.
На фиг. 12 представлена временная диаграмма для случая, когда канальные данные опережают на один элемент кода на основе опорного времени по фиг.10. На фиг.12 ссылочная позиция 431 относится к выходным канальным данным с опережением на один элемент кода с ортогонального расширителя, которые подаются на комплексный умножитель, а ссылочная позиция 432 относится к расширяющим кодам с выхода генератора расширяющих кодов. Как показано на фиг.12, расширяющий код, осуществляющий переход состояния π/2-ДФМ, вводится из генератора расширяющих кодов в момент времени, когда канальные данные вводятся в комплексный умножитель на основе опорного времени, тем самым реализуя схему переходов состояний Д-К.
На фиг.13 показана временная диаграмма для случая, когда канальные данные задерживаются на один элемент кода на основе опорного времени по фиг.10. На фиг. 13 ссылочная позиция 441 представляет выходные канальные данные, задержанные на один элемент кода ортогонального расширителя, которые вводятся в комплексный умножитель, а ссылочная позиция 442 представляет расширяющие коды, выводимые из генератора расширяющих кодов. Как показано на фиг. 13, расширяющий код, осуществляющий переход состояния π/2-ДФМ, вводится из генератора расширяющих кодов на момент времени, когда канальные данные вводятся в комплексный умножитель, на основе опорного времени, тем самым реализуя переход состояний Д-К.
Как можно определить из предшествующего описания, имеется возможность реализовать переход состояний Д-К, используя генератор расширяющих кодов, который осуществляет переход состояний К-Д путем опережения или задержки канальных данных на один элемент кода.
Второй способ осуществления состоит в реализации перехода состояний Д-К путем опережения или задержки выходного сигнала генератора К-Д расширяющих кодов на один элемент кода. Ниже описан способ задержки выходного сигнала на один элемент кода, который может быть сравнительно легко осуществлен.
Фиг. 14 иллюстрирует схему осуществления перехода состояний Д-К с использованием задержки на один элемент кода в соответствии с возможным вариантом осуществления настоящего изобретения.
Как показано на фиг.14, ортогональный расширитель 511, принимающий канальные кодированные данные, умножает кодированные данные на определенный ортогональный код для формирования ортогонально расширенных канальных данных. Здесь используется код Уолша в качестве ортогонального кода. Задержка 515 на один элемент кода задерживает канальные данные на один элемент кода. Генератор 513 расширяющих кодов формирует расширяющие коды для расширения канальных данных. Генератор 513 расширяющих кодов может формировать расширяющую последовательность, в которой повторяется Д-К сдвиг по фазе, и также может формировать расширяющую последовательность, в которой повторяется К-Д-ПНУФ-Д. Комплексный умножитель 512 комплексно умножает канальные данные, задержанные на один элемент кода, на расширяющие коды для формирования расширенных сигналов передачи. Здесь могут быть использованы ПШ коды в качестве расширяющих кодов. ПШ коды имеют частоту следования, равную частоте следования элементов кода, и могут иметь значения из +1 и -1. Блок 514 низкочастотной фильтрации и модуляции фильтрует по нижним частотам расширенные сигналы с выхода комплексного умножителя 512 и затем модулирует отфильтрованные сигналы для получения РЧ сигналов. В качестве модулятора может быть использован КФМ модулятор.
Как показано на фиг.14, задержка на один элемент кода 515 задерживает канальные данные на один элемент кода для подачи канальных данных, задержанных на один элемент кода, на комплексный умножитель 512. Поэтому генератор 513 расширяющих кодов может осуществить или переход состояний Д - К или переход состояний К-Д-ПНУФ-Д.
Фиг.15 иллюстрирует схему осуществления перехода состояний Д-К или перехода состояний К-Д-ПНУФ-Д с использованием задержки на один элемент кода в соответствии с другим вариантом осуществления настоящего изобретения.
Как показано на фиг. 15, ортогональный расширитель 511 принимает канальные кодированные данные, умножает кодированные данные на определенный ортогональный код для формирования ортогонально расширенных канальных данных. Здесь используется код Уолша в качестве ортогонального кода. Генератор 513 расширяющих кодов формирует расширяющие коды для расширения канальных данных. Задержка 516 на один элемент кода задерживает расширяющие коды с выхода генератора 513 на один элемент кода. Комплексный умножитель 512 комплексно умножает канальные данные на расширяющие коды, задержанные на один элемент кода, для формирования расширенных сигналов передачи. Здесь могут быть использованы ПШ коды в качестве расширяющих кодов. ПШ коды имеют частоту следования, равную частоте следования элементов кода, и могут иметь значения +1 и -1. В данном варианте осуществления предполагается, что ПШ коды имеют значения +1 и -1. Блок 514 низкочастотной фильтрациии и модуляции фильтрует по нижним частотам расширенные сигналы с выхода комплексного умножителя 512 и затем модулирует отфильтрованные сигналы для получения РЧ сигналов. В качестве модулятора может быть использован КФМ модулятор.
Согласно фиг.15, задержка 516 на один элемент кода задерживает выходной сигнал генератора 513 расширяющих кодов на один элемент кода для подачи расширяющих кодов, задержанных на один элемент кода, на комплексный умножитель 512. Поэтому можно осуществить схему перехода состояний Д-К или схему перехода состояний К-Д-ПНУФ-Д с использованием генератора К-Д расширяющих кодов.
Генератор 513 может также осуществить переход состояний Д-К без использования задержки на один элемент кода, как показано на фиг.14 и 15. Это может быть реализовано посредством задержки на один элемент кода выходного сигнала 2-прореживателя 812 в обычном генераторе К-Д расширяющих кодов, показанном на фиг.8.
Фиг. 16 иллюстрирует генератор Д-К расширяющих кодов в соответствии с другим вариантом осуществления настоящего изобретения.
Как показано на фиг.16, 2-прореживатель 612 прореживает ПШi, и линия задержки 615 задерживает выходной сигнал 2-прореживателя 612 на один элемент кода. Время задержки линии задержки 615 может быть установлено на другой заданный временной интервал, выраженный в элементах кода, отличный от одного элемента кода. Умножитель 613 умножает ортогональный код ОС2 на выходной сигнал линии задержки 615. Умножитель 611 умножает ортогональный код OC1 на ПШq для формирования расширяющего кода Ci, и умножитель 614 умножает выходной сигнал умножителя 613 на ПШ для формирования расширяющего кода Cq.
На фиг. 17 показана временная диаграмма для схемы генерации расширяющих последовательностей с использованием КФМ, π/2-ДФМ по фиг.16. На фиг.17 предполагается, что начальными величинами ортогональных кодов OC1 и OC2 является +1. На фиг. 17 ссылочная позиция 711 представляет ПШi, 712 - ПШi выходной сигнал 2-прореживателя 612, 713 - задержанный ПШi выходной сигнал линии задержки 615, 714 - выходной сигнал умножителя 613, который умножает ортогональный код OC2 на выходной сигнал линии задержки 615, 715 - ПШq, 716 - расширяющий код Ci с выхода умножителя 611, который умножает ПШq на ортогональный код OC1, 717 - расширяющий код Cq с выхода умножителя 614, который умножает ПШq на выходной сигнал умножителя 613, 718 - переходные состояния расширяющих кодов.
На фиг.17 предполагается, что начальными значениями ортогональных кодов OC1 и ОС2 являются +1. Как показано на фиг.16 и 17, выходной сигнал умножителя 611 и выходной сигнал умножителя 614 образуют расширяющие коды Ci и Cq соответственно. Как показано ссылочной позицией 718, расширяющие коды Сi и Cq с выходов умножителей 611 и 614 имеют вид (+1, -1), (-1, -1), (-1, +1), (+1, +1), (+1, -1), (-1, -1), (+1, +1), (+1, -1), (-1, +1), (-1, -1), (+1, +1), (+1, -1), (+1, -1), (-1,-1), (+1, -1). Поэтому для случая на фиг.16 переходы состояний расширяющих кодов (Ci, Cq) являются следующие: от начального состояния в четвертый квадрант (К переход), третий квадрант (Д переход), второй квадрант (К переход), первый квадрант (Д переход), четвертый квадрант (К переход), третий квадрант (Д переход), первый квадрант (К переход), четвертый квадрант (Д переход), второй квадрант (К переход), третий квадрант (Д переход), первый квадрант (К переход), четвертый квадрант (К переход), четвертый квадрант (Д переход), третий квадрант (К переход) и четвертый квадрант (Д переход). Следует отметить, что переходы состояний чередуются между π/2-ДФМ и КФМ на основе опорного времени.
Фиг. 18 иллюстрирует схему повторного осуществления переходов состояний КФМ и π/2-ДФМ посредством комбинирования ПШ последовательностей без использования ортогональных кодов в соответствии с другим вариантом осуществления настоящего изобретения. На фиг.18 сигналы А представляют собой КФМ сигналы, которыми являются ПШi и ПШq, выводимые без сдвига по фазе, и сигналы D представляют собой π/2-ДФМ сигналы.
Как показано на фиг.18, задержка 811 задерживает предшествующий расширяющий код Ci, и задержка 821 задерживает предшествующий расширяющий код Cq. Умножитель 815 умножает ПШq код на "-1" для инвертирования ПШq кода. Умножитель 814 умножает предшествующий расширяющий код Cq с выхода линии задержки 821 на выходной сигнал умножителя 815. Первый селектор 812, принимающий ПШi код в качестве первого сигнала А и выходной сигнал умножителя 814 в качестве второго сигнала D, выбирает один из входных сигналов А и D под управлением контроллера 831. Умножитель 824 умножает предшествующий расширяющий код Ci с выхода линии задержки 811 на ПШq код. Второй селектор 822, принимающий ПШq код в качестве первого сигнала А и выходной сигнал умножителя 824 в качестве второго сигнала D, выбирает один из входных сигналов А и D под управлением контроллера 831. Здесь первые сигналы А представляют собой КФМ сигналы, которыми являются ПШi и ПШq, выводимые без сдвига по фазе, а вторые сигналы D представляют собой π/2-ДФМ сигналы.
В процессе работы контроллер 831 управляет первым и вторым селекторами 812 и 822 для последовательного выбора сигналов А и D в определенном порядке. Также можно осуществить различные способы расширения по спектру частот, имеющие более низкое ОМС при минимизации ухудшения характеристики ЧОБ посредством комбинирования КФМ и π/2-ДФМ. В варианте осуществления по фиг. 18 в связи с тем, что входные ПШi и ПШq выводят без изменения (т.е. без сдвига по фазе), сначала осуществляют КФМ, чтобы получить значения, соответствующие одному из квадрантов от первого до четвертого (+1, +1), (-1, +1), (-1, -1), (+1, -1), и затем осуществляют π/2-ДФМ для сдвига предшествующих выходных сигналов на ±π/2 фазы. Это может быть реализовано последовательным повторным выбором сигналов А и D с использованием первого и второго селекторов 812 и 822. ПШi и ПШq коды на фиг.18 могут быть такими же, как и обычные ПШ расширяющие коды.
Фиг.19 иллюстрирует схему формирования расширяющих кодов комбинированием КФМ, π/2-ДФМ и пересечений нулевого уровня или фиксации в соответствии с возможным вариантом осуществления настоящего изобретения. На фиг.19 сигналы А представляют собой КФМ сигналы, которыми являются ПШi и ПШq, выводимые без сдвига по фазе, сигналы В и D представляют собой π/2-ДФМ сигналы и сигналы С представляют собой ПНУФ сигналы.
Как показано на фиг.19, линия задержки 911 задерживает предшествующий расширяющий код Ci, линия задержки 921 задерживает предшествующий расширяющий код Cq. Умножитель 913 умножает ПШi код на предшествующий расширяющий код Ci с выхода линии задержки 911. Умножитель 915 умножает ПШq код на "-1", чтобы инвертировать ПШq код. Умножитель 914 умножает предшествующий расширяющий код Cq выхода линии задержки 921 на выходной сигнал умножителя 915. Первый селектор 912 принимает ПШi код в качестве первого сигнала А, выходной сигнал умножителя 923 в качестве третьего сигнала С и выходной сигнал умножителя 924 в качестве второго и четвертого сигналов В и D, выбирает один из входных сигналов А, В, С и D под управлением контроллера 931. Здесь первые сигналы А представляют собой КФМ сигналы, которыми являются Пшi и ПШq, выводимые без сдвига по фазе, второй и четвертый сигналы В и D представляют собой π/2-ДФМ сигналы, и третьи сигналы С представляют собой ПНУФ сигналы.
В процессе работы контроллер 931 управляет первым и вторым селекторами 912 и 922 для последовательного выбора в определенном порядке сигналов А, В, С и D. Также возможно осуществить различные способы расширения, имеющие более низкое ОМС при одновременной минимизации ухудшения характеристики ЧОБ, посредством комбинирования КФМ, ПНУ, π/2-ДФМ и ФИКСАЦИИ (здесь далее обозначаемой "Ф" для краткости). Например, в первом способе расширения последовательно используется КФМ-π/2-ДФМ-ПНУ-π-ДФМ (здесь обозначаемое как К-Д-Н-Д), во втором способе расширения используется Фиксация-π/2-ДФМ, и в третьем способе расширения используется ПНУ-π/2-ДФМ. Помимо этого, также возможно использовать способ расширения, являющийся комбинацией вышеуказанных первого, второго и третьего способов расширения. Этот способ может быть осуществлен, как описано ниже.
Ниже описано формирование расширяющих кодов в соответствии с последовательностью К-Д-Н-Д по фиг.19. В этом способе в связи с тем, что входные же ПШi и ПШq используются без сдвига по фазе, сначала осуществляют КФМ для выдачи значений, соответствующих одному из квадрантов, от первого до четвертого (+1, +1), (-1, +1), (-1, -1), (+1 -1); затем осуществляют π/2-ДФМ для сдвига предшествующих выходных сигналов на ±π/2-ДФМ фазы; после этого осуществляют ПНУ для вывода тех же значений, что и выведенные ранее, или для изменения знаков обоих ранее выведенных значений; и, наконец, осуществляют ±π/2-ДФМ. Это делается последовательным повторным выбором сигналов А, В, С и В с использованием первого и второго селекторов 912 и 922. ПШi и ПШq коды по фиг. 19 могут представлять собой обычные ПШ расширяющие коды.
Ниже описан другой переход состояний, возникающий в схеме по фиг.19. Сначала может быть осуществлен переход КФМ-ПНУ чередованием между сигналами А и C с использованием первого и второго селекторов 912 и 922, и может быть осуществлен ПНУ-КФМ переход чередованием между сигналами С и А с использованием первого и второго селекторов 912 и 922. Здесь предполагается, что формируются одни и те же расширяющие коды, последовательности вывода расширяющих кодов различаются, как в случаях КФМ-ПНУ и ПНУ-КФМ, т.е., когда возникает задержка в один элемент кода. Переход ПНУ-π/2-ДФМ (или π/2-ДФМ-ПНУ) может быть осуществлен чередованием между сигналами С и В (или сигналами В и С) с использованием первого и второго селекторов 912 и 922; КФМ-π/2-ДФМ-ПНУ-π/2-ДФМ могут быть осуществлены повторением закона выбора сигналов А, В, С и D с использованием первого и второго селекторов 912 и 922; π/2-ДФМ-КФМ-ПНУ-π/2-ДФМ могут быть осуществлены повторением закона выбора сигналов В, А, С, и D с использованием первого и второго селекторов 912 и 922; и КФМ-ПНУ-КФМ-π/2-ДФМ могут быть осуществлены повторением закона выбора сигналов А, С, А и В с использованием первого и второго селекторов 912 и 922.
Фиг. 20А иллюстрирует схему формирования расширяющих последовательностей Б соответствии с последовательностью переходов К-Д-Н-Д. Как показано на фиг. 20А, 4-прореживатель 1011 четырехкратно прореживает ПШ1 код и 4-прореживатель 1021 четырехкратно прореживает ПШ2 код. В этом варианте осуществления "прореживание" означает, что символы имеют одинаковое значение в течение заданной длительности элемента кода. Подробное описание выходных сигналов прореживателей будет дано ниже.
Фиг. 20В иллюстрирует изменение символов в единицах времени по отношению к прореживанию на фиг.20В ссылочная позиция 1115 представляет результат 4-прореживания, когда ПШ1 равно +1 в 4-прореживателе 1011 на фиг.20А, а ссылочная позиция 1117 представляет результат 4-прореживания, когда ПШ2 равно -1 в 4-прореживателе 1021 на фиг.20А.
Умножитель 1013 на фиг.20А умножает выходной сигнал умножителя 1012 на ПШ3 код для вывода расширяющего кода Ci, и умножитель 1023 умножает выходной сигнал умножителя 1022 на ПШ3 код для вывода расширяющего кода Cq. С учетом работы схемы формирования расширяющих кодов по фиг.20А, формируются ПШ1 и ПШ2 коды, обозначенные ссылочными позициями 1111 и 1113 на фиг.20В, прореживаются прореживателями 1011 и 1021, как показано ссылочными позициями 1115 и 1117, и затем умножаются на ортогональные коды OC1 и ОС2 в умножителях 1012 и 1022. После этого выходные сигналы умножителей 1012 и 1022 умножаются на ПШ3 код в умножителях 1013 и 1023, при этом выдаются окончательно сформированные расширяющие коды Ci и Cq. Как только ПШ1 и ПШ2 коды определены, они поддерживаются в течение 4 элементов кода. ПШ1 и ПШ2 коды, выведенные из прореживателей 1011 и 1021, умножаются на соответствующие ортогональные коды OC1 и OC2 в умножителях соответственно 1012 и 1022. В этот момент в первом элементе кода осуществляется КФМ. Если предполагается, что выходной сигнал для предшествующего времени в элементах кода существует в первом квадранте (+1, +1), то выходной сигнал для времени второго элемента кода возникнет во втором квадранте (-1, +1) или в четвертом квадранте (+1, -1), что соответствует π/2-ДФМ. Выходной сигнал для времени третьего элемента кода возникает во втором квадранте (-1, +1) или в четвертом квадранте (+1, -1), за счет применения ортогональных кодов и ПШ3 кода/ что соответствует ПНУФ. Во время четвертого элемента кода выходной сигнал возникает в первом квадранте (+1, +1) или третьем квадранте (-1, -1), что соответствует π/2-ДФМ.
Фиг. 21А иллюстрирует другую схему формирования расширяющих кодов в соответствии с К-Д-Н-Д.
Как показано на фиг. 21А, умножитель 1211 умножает ПШi код на ортогональный код OC1, и умножитель 1221 умножает ПШi код на ортогональный код ОС2. Последовательно-параллельный (пп) преобразователь 1231 преобразует последовательный ПШq код в параллельные данные, 2-прореживатель 1241 прореживает ПШq код с выхода ПП преобразователя 1231 для вывода нечетных значений ПШq кода, и 2-прореживатель 1251 прореживает ПШq код с выхода ПП преобразователя 1231 для вывода четных значений ПШq кода.
Ниже детально описаны выходные сигналы ПП преобразователя 1231 и выходные сигналы 2-прореживателей 1241 и 1251 со ссылками на фиг.21В, которые иллюстрирует изменение символов во времени. По отношению к выходам 2-прореживателей 1241 и 1251 нечетные значения ПШq кода изменяются, как показано ссылочной позицией 1315 на фиг.21В. Умножитель 1212 на фиг.21А умножает выходной сигнал прореживателя 1241 на выходной сигнал умножителя 1211 для формирования расширяющего кода Ci, и умножитель 1222 умножает выходной сигнал прореживателя 1251 на выходной сигнал умножителя 1221 для формирования расширяющего кода Cq. Хотя в схеме на фиг.20А используется три ПШ кода, схема на фиг.21А может выполнять такую же функцию, используя только два ПШ кода.
Как показано на фиг.21А и 21В, ПШ код умножается на ортогональные коды OC1 и ОС2 в умножителях 1211 и 1221 соответственно. ПШq код после прохождения ПП преобразователя 1231 и 2-прореживателей 1241 и 1251, умножается на выходные сигналы умножителей 1211 и 1221 в умножителях 1212 и 1222 для получения на выходе расширяющих кодов Ci и Cq. В генераторе расширяющих кодов по фиг. 21А ПШq код используется в качестве ПШ1 и ПШ2 кодов по фиг.20А, и ПШ1 код используется в качестве ПШз кода по фиг.20А.
На фиг.22 представлена блок-схема, иллюстрирующая способ предотвращения роста ОМС не только, когда расширяющий код испытывает пересечения нулевого уровня ПНУ, но и когда расширяющий код сохраняет одну и ту же величину (т.е. фиксируется). Как показано на фиг.22, для предотвращения пересечений нулевого уровня и фиксации расширяющих кодов ПШi и ПШq при возникновении ПНУ, производят сдвиг расширяющих кодов по фазе на +π/2 или -π/2, в противном случае ПШi и ПШq выводятся без изменений. Этот способ является гибридным способом, использующим π/2-ДФМ и КФМ, и может исключать ПНУ и фиксацию.
Как показано на фиг. 22, значения ПШ кодов вводятся на этапе 1411, и значения ПШi и ПШq сравниваются с предшествующими значениями Ci и Cq на этапе 1412. Если Ci≠ПШi и Cq≠ПШq, то процедура переходит к этапу 1413, на котором фаза расширяющих кодов сдвигается на +π/2. Однако, если любое из значений ПШi и ПШq равно соответствующим предшествующим значениям Ci и Cq, процедура переходит к этапу 1415. Если Ci=ПШi и Cq=ПШq на этапе 1415, процедура переходит к этапу 1414, на котором фаза расширяющих кодов сдвигается на -π/2. Однако, если любое из значений ПШi и ПШq не равно соответствующим предшествующим значениям Ci и Cq, процедура переходит к этапу 1416, на котором значение ПШi выдается как неизменное Ci, a значение ПШq выдается как неизмененное Cq.
Как описано выше, новая схема формирования расширяющей последовательности формирует расширяющую последовательность, которая осуществляет повторные переходы состояний между π/2-ДФМ и КФМ, чтобы тем самым уменьшить ОМС.
Хотя изобретение было показано и описано со ссылками на предпочтительные варианты его осуществления, специалистам в данной области понятно, что могут быть осуществлены различные изменения по форме и в деталях без изменения сущности и объема изобретения, определяемых формулой изобретения.
Изобретение используется в системах мобильной связи с множественным доступом и кодовым разделением каналов (МДКР). Устройство включает в себя генератор псевдошумовой (ПШ) кодовой последовательности для формирования Пшi и ПШq последовательностей; генератор ортогональных кодов, которые осуществляют переходы состояния дифференциальной фазовой манипуляции (ДМФ) с интервалами по меньшей мере в два элемента кода; и генератор расширяющих кодов Сi и Cq для формирования расширяющих кодов Сi и Cq посредством смешивания (221, 223, 224) Пшi и ПШq кодовых последовательностей с первым и вторым ортогональными кодами, так что текущая фаза расширяющих кодов Сi и Cq поочередно осуществляет переходы состояний квадратурной фазовой манипуляции (КФМ) и ДФМ по отношению к предшествующей фазе расширяющих кодов Сi и Cq. Технический результат: уменьшение отношения максимальной мощности к средней мощности без ухудшения характеристики частоты ошибок в битах. 11 с. и 16 з. п.ф-лы, 22 ил.
6. Устройство для формирования расширяющих кодов в системе связи МДКР, включающее в себя генератор ПШ последовательностей для формирования ПШi и ПШq последовательностей; и генератор расширяющих кодов для формирования расширяющих кодов Ci и Cq посредством смешивания ПШi и ПШq последовательностей с предшествующими расширяющими кодами Ci и Cq так, что текущая фаза расширяющих кодов Ci и Cq поочередно осуществляют переходы состояний КФМ и ДФМ по отношению к предшествующей фазе расширяющих кодов Ci и Cq.
Прибор для очистки паром от сажи дымогарных трубок в паровозных котлах | 1913 |
|
SU95A1 |
RU 95108557 А1, 10.05.1997 | |||
Прибор для очистки паром от сажи дымогарных трубок в паровозных котлах | 1913 |
|
SU95A1 |
US 5103459 А, 07.04.1992 | |||
Огнетушитель | 0 |
|
SU91A1 |
Авторы
Даты
2002-06-20—Публикация
1999-09-29—Подача