Изобретение относится к измерительной технике, а именно к приборам для измерения солнечной радиации. Оно может быть использовано для мониторинга окружающей среды: в метеорологии, климатологии, гелиотехнике.
Известные устройства, содержащие приемную поверхность термобатарею-индикатор и термобатарию-холодильник, требуют применения электрических схем для снятия показаний измеряемой величины (см. а.с. СССР 513269, G 01 J 5/10, 05.05.76; 402843, G 01 W 1/12, 19.10.73; 1018089, G 01 W 1/12, 3.04.83).
Недостатком данных устройств является отсутствие автономности и прерывность измерения солнечной радиации, связанные с тем, что необходимо присутствие оператора.
Наиболее близким к предлагаемому решению является прибор AT-50 (см. Справочник по гидрометеорологическим приборам и установкам, Ленинград, 1971, С.41). Прибор содержит два спая термоэлементов. Активный спай (горячий) подведен к зачерненному диску, воспринимающему прямую солнечную радиацию, а пассивный спай (холодный) - к корпусу прибора так, чтобы на него не попадали прямые лучи солнца. Под действием солнечной радиации приемник нагревается, и между спаями возникает разность температур, что приводит к возникновению электродвижущей силы, измеряемой гальванометром.
Недостатком этого прибора является низкая надежность в экстремальных климатических условиях, сложность в эксплуатации и невозможность вести непрерывную запись в автономном режиме.
Задачей, на решение которой направлено предлагаемое техническое решение, является создание автономного прибора, работающего в непрерывном автоматическом режиме с регистрацией показаний.
Технический результат, который может быть получен в результате использования предлагаемого изобретения, является повышение надежности прибора.
Указанный технический результат достигается тем, что, как и прототип, актинометр содержит корпус, два термоэлемента, один из которых открыт для солнечных лучей.
В отличие от известного предлагаемый актинометр дополнительно снабжен записывающим устройством и световым экраном, в тени которого размещен второй термоэлемент, при этом оба термоэлемента выполнены из сплава с эффектом памяти формы и кинематически связаны между собой и осью вращения, на которой закреплен пишущий элемент, а записывающее устройство снабжено писчей лентой, приводимой в движение часовым механизмом, взводимым приводом, движителем которого является элемент из сплава с эффектом памяти формы.
Таким образом, достижение технического результата основано на свойствах сплава с эффектом памяти формы, из которого изготовлены термочувствительные элементы и движитель привода, взводимый часовым механизмом, который приводит в движение барабан с писчей лентой.
В диапазоне перепада температуры окружающей среды при суточных колебаниях и/или изменениях степени затененности в элементах происходит обратимое мартенситное (аллотропное) превращение. Мартенситные кристаллы под действием постоянной нагрузки (пружины) в ходе знакопеременных изменений температуры растут и сокращаются ориентированно, что приводит к макроскопической обратимой деформации термочувствительных элементов.
На чертеже представлен автономный актинометр. Он содержит термочувствительные элементы 1 и встречные пружины 2, попарно разделенные световым экраном 3, присоединенные к концам рычага 4, свободно вращающемуся относительно оси 5, на которой закреплен пишущий элемент 6, находящийся в контакте с писчей лентой 7, сматываемой с барабана 8 и наматываемой на барабан 9. Барабан 9 снабжен часовым механизмом 10, который соединен с взводящим механизмом, состоящим из термочувствительного стержня 11 и пружины 12.
Актинометр работает следующим образом. Поскольку два одинаковых элемента 1, разделенные световым экраном 3, включены посредством рычагов 4 навстречу друг другу по отношению к направлению вращения оси 5, то эта ось в отсутствии солнечной радиации (при одинаковом ходе изменения температуры на элементах 1) будет оставаться неподвижной, а при разном ходе (наличие облучения) будет вращаться, поворачиваясь на угол, пропорциональный разности температур на каждом элементе 1, нанося посредством соединенного с ней пишущего элемента 6 соответственно прямую и квазипериодическую линию на ленте 7. Амплитуда квазипериодической линии будет пропорциональна разности температур между освещенным и неосвещенным элементом 1, т.е. интенсивности солнечной радиации. Элемент 11 в ходе суточного колебания температуры и под действием упругой геликоидальной пружины 12 будет совершать знакопеременные вращательные движения, взводя тем самым пружину часового механизма 10, который приводит в движение барабан 9, перемещая равномерно ленту 7 с барабана 8.
В результате работа устройства в целом на ленте будет зафиксирована диаграмма изменения уровня солнечной радиации в течение всего наблюдаемого периода.
Термочувствительные элементы могут быть изготовлены из сплава на основе никелида титана, имеющего интервал мартенситных превращений в диапазоне от - 50 до 70oС при величине гистерезиса 1,5oС. Этим требованиям соответствует сплав, легированный палладием, цирконием и медью, способный совершать циклы свыше 107 раз (Патент РФ 2048744).
Преимущество предлагаемого технического решения состоит в том, что использование сплава с эффектом памяти формы в качестве термочувствительных элементов обеспечивает возможность вести автономно длительные наблюдения за изменением уровня солнечной радиации, в том числе в труднодоступных местах земного шара.
Автономный актинометр предназначен для мониторинга окружающей среды, следовательно, соответствует условию "промышленная применимость".
название | год | авторы | номер документа |
---|---|---|---|
АВТОНОМНЫЙ ТЕРМОГРАФ | 1999 |
|
RU2186348C2 |
СПОСОБ АВТОНОМНОГО ИЗМЕРЕНИЯ ВЛАЖНОСТИ ВОЗДУШНОЙ СРЕДЫ | 2003 |
|
RU2257599C2 |
УСТРОЙСТВО ДЛЯ МОНИТОРИНГА ТЕПЛОВЫХ ПОТОКОВ | 1999 |
|
RU2187082C2 |
СИГНАЛИЗАТОР ТЕМПЕРАТУРЫ | 2000 |
|
RU2201582C2 |
АКТИНОМЕТРИЧЕСКИЙ ПРИЕМНИК БОЛОМЕТРИЧЕСКОГО ТИПА | 2011 |
|
RU2469282C1 |
СПОСОБ АВТОНОМНОГО ИЗМЕРЕНИЯ ПЕРЕГРЕВА ОБЪЕКТА В АВАРИЙНЫХ СИТУАЦИЯХ | 1998 |
|
RU2174674C2 |
АВТОНОМНАЯ СИСТЕМА СЛЕЖЕНИЯ ЗА ПЕРЕМЕЩЕНИЕМ СОЛНЦА ПО НЕБОСВОДУ | 2006 |
|
RU2313046C2 |
УСТРОЙСТВО ДЛЯ УЧЕБНОЙ ДЕМОНСТРАЦИИ ФИЗИКО-ХИМИЧЕСКИХ ЯВЛЕНИЙ | 2007 |
|
RU2374698C2 |
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ ОПТИЧЕСКОГО И СВЧ-ИЗЛУЧЕНИЯ | 2001 |
|
RU2208224C2 |
ИНСТРУМЕНТ ДЛЯ РАЗВАЛЬЦОВКИ ТРУБ | 2003 |
|
RU2257275C2 |
Использование: мониторинг окружающей среды в метеорологии, климатологии, гелиотехнике. Сущность: устройство содержит три термоэлемента, два из которых обеспечивают измерение относительной величины солнечной радиации за счет перепада температур между теневой и солнечной зонами прибора. Третий элемент приводит в действие записывающее устройство. Работа элементов основана на эффекте памяти формы в металлах. Технический результат: повышение эффективности мониторинга окружающей среды за счет увеличения надежности и автономности работы прибора. 1 ил.
Актинометр автономный, содержащий корпус, два термоэлемента, один из которых открыт для солнечных лучей, отличающийся тем, что дополнительно снабжен записывающим устройством и световым экраном, в тени которого размещен второй термоэлемент, при этом оба термоэлемента выполнены из сплава с эффектом памяти формы и кинематически соединены между собой и осью вращения, на которой закреплен пишущий элемент, а записывающее устройство снабжено писчей лентой на барабанах, приводимых в движение часовым механизмом, взводимым за счет энергии, вырабатываемой третьим термоэлементом, также выполненным из сплава с эффектом памяти формы.
Справочник по гидрометеорологическим приборам и установкам | |||
- Л.: Гидрометеоиздат, 1971, с.41 | |||
СПОСОБ РЕГИСТРАЦИИ ИНТЕНСИВНОСТИ СОЛНЕЧНОЙРАДИАЦИИ | 0 |
|
SU300863A1 |
Актинометр | 1981 |
|
SU1013411A1 |
Устройство для измерения составляющих радиационного баланса | 1976 |
|
SU678440A1 |
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ АКТИНОМЕТРА | 1988 |
|
RU2011953C1 |
JP 6003187, 11.01.1994 | |||
JP 61159119, 18.07.1986. |
Авторы
Даты
2002-07-20—Публикация
2000-02-03—Подача