Изобретение относится к промышленности строительных материалов, а именно к контролю качества бетонов, растворов и цементного камня.
Известен способ определения водонепроницаемости бетона по "мокрому пятну", согласно которому образцы цилиндрической формы крепят и герметизируют в специальных обоймах, подают ступенями по 0,2 МПа давление воды на одну из торцевых поверхностей каждого образца с выдерживанием давления на каждой ступени в течение заданного времени до появления на противоположных торцевых поверхностях этих образцов признаков фильтрации воды в виде капель или мокрого пятна, а за водонепроницаемость принимают соответствующее значение давления, уменьшенное на 0,2 МПа [1].
Этот способ имеет ряд недостатков. Способ имеет значительную трудоемкость, так как испытаниям должно быть подвергнуто не менее шести образцов. Ненадежность герметичности образцов приводят к дополнительным погрешностям и повторным испытаниям. Подача давления ступенями 0,2 МПа является весьма грубой и приводит к дополнительной систематической погрешности, достигающей 10-30%. Из-за того, что ступень составляет 0,2 МПа, могут быть упущены также значения водонепроницаемости как 0,1; 0,3; 0,5 и т.д. Например, вместо водонепроницаемости 0,3 МПа по этому способу должно быть принято либо 0,2, либо 0,4 МПа, а вместо 0,5 МПа - либо 0,4, либо 0,6 МПа. Дальнейшие комментарии излишни. Испытания по этому способу весьма длительны - на каждой ступени длительность выдерживания достигает 16 часов, а в целом, например, при водонепроницаемости 0,8-1 МПа длительность испытаний составляет 7-8 суток. При этом испытания должны проводиться круглосуточно и с применением дорогостоящих компрессионных установок, а также требуют привлечения операторов на длительное время.
Недостатком этого способа является и применение образцов только цилиндрической формы и только одного диаметра (150 мм).
Известен также способ ускоренного определения водонепроницаемости бетона по его воздухопроницаемости, согласно которому на поверхность нижних (по условию формования) торцов образцов - цилиндров или кубов устанавливают фланец камеры вакууммирующего устройства с нанесенной на него кольцевым жгутом герметизирующей мастикой. С помощью указанного устройства создают в камере вакуумметрическое давление не менее 0,064 МПа, определяют по падению вакуумметрического давления в камере значение сопротивления бетона прониканию воздуха, а водонепроницаемость бетона определяют по заранее установленной градуировочной зависимости между водонепроницаемостью и сопротивлением бетона проникновению воздуха [2].
Этот способ имеет следующие недостатки.
Применяемые для испытаний образцы могут иметь различную влажность, то есть различную степень наполнения пор водой, что обуславливает различное сопротивление бетона проникновению воздуха. Из-за этого отклонения значений измеряемой водонепроницаемости от значений, следующих из градуировочной зависимости, достигает 15-20%. Сама же градуировочная зависимость имеет погрешность 10-15%, так как воздух не подобен воде по проявлению таких ее свойств как поверхностное натяжение, вязкость и тепловое расширение.
Установление градуировочной зависимости является длительным и трудоемким процессом, так как требует привлечения базового способа [1]. Это обстоятельство осложняется и тем, что зависимость должна быть не одна. Их требуется устанавливать столько, сколько контролируется составов бетона, так как согласно способу допускается применять градуировочную зависимость, установленную только для конкретного соотношения между заполнителями и цементом в бетоне. Таким образом, анализируемый способ недостаточно точен, а его использование требует проведения предварительных, трудоемких и длительных испытаний по установлению градуировочных зависимостей.
В итоге суммарная погрешность определения водонепроницаемости по этому способу составляет не менее 30%.
Известен также способ определения водонепроницаемости бетона, включающий водонасыщение водой образцов, высушивание их до постоянной массы, определение их водопоглощения и нахождение водонепроницаемости по табулированной статистической зависимости между водонепроницаемостью и водопоглощением [3].
Недостатками данного способа являются высокая погрешность, достигающая 40% и значительная длительность его осуществления, достигающая 7 суток.
Высокая погрешность способа прежде всего вызвана тем, что водонепроницаемость пропорциональна капиллярной, а не общей пористости материала, которой и соответствует водопоглощение. Общая же пористость, как правило, в 1,3-1,5 раза больше капиллярной. Кроме этого, при одном и том же объеме капиллярная пористость может характеризоваться различным распределением пор по размерам и, следовательно, различным сопротивлением фильтрации воды под давлением, которое характеризует водонепроницаемость. Данный способ этого также не учитывает.
Значительная длительность осуществления способа обусловлена необходимостью проведения как полного насыщения водой образцов, так и их последующего высушивания до постоянной массы (обязательное требование определения водопоглощения по ГОСТ 12730.3). Длительность осуществления каждой из этих операций составляет около 4 суток.
Наиболее близким из известных технических решений к заявляемому является способ определения водонепроницаемости цементных материалов, включающий высушивание образцов до постоянной массы, гидроизоляцию их боковых поверхностей, водонасыщение, определение водопоглощения и расчет водонепроницаемости по показателям водонасыщения растворной части и скорости водопоглощения части [4].
Недостатком этого способа является большая погрешность, достигающая 30%, и повышенная длительность его осуществления, достигающая 5 суток.
Большая погрешность способа вызвана тем, что водонепроницаемость пропорциональная капиллярной, а не общей пористости материала, которой соответствует как водонасыщение, так и водопоглощение (см. выше анализ предшествующего способа). Кроме этого, дополнительным источником погрешности является насыщение образца через поверхность торца образца, состояние и пористость которой не совсем адекватны состоянию и пористости материала внутри образца.
Повышенная длительность осуществления этого способа обусловлена теми же факторами, которые приведены в анализе предшествующего способа.
Техническим результатом, достигаемым при осуществлении заявленного изобретения является повышение точности и сокращение длительности определения водонепроницаемости цементных материалов.
Указанный технический результат достигается тем, что в способе определения водонепроницаемости цементных материалов, включающем высушивание образцов до постоянной массы, гидроизоляцию их боковых поверхностей, водонасыщение и определение водопоглощения материалов, перед гидроизоляцией боковых поверхностей образцы раскалывают на две части, водонасыщают их через поверхность раскола за 1 и 5 минут соответственно, находят эквивалентное капиллярное давление в материале в зависимости от капиллярной пористости растворной части материала и объема поглощенной воды, и показатель степени кинетики водонасыщения, определяют объем капиллярных пор растворной части материала, а водонепроницаемость цементных материалов рассчитывают по формуле
где Рi - искомая водонепроницаемость, МПа, которую находят путем последовательной подстановки, в формулу ее численных значений Рi, начиная с рi= 0,2 МПа и увеличивая его с каждым шагом на 0,05 МПа до попадания расчетного значения параметра λ′ в интервал, определяемый неравенством 0,95λ<λ′<1,05λ;
Рк - эквивалентное капиллярное давление, возникающее при водонасыщении материалов, МПа;
n - показатель степени кинетики водонасыщения материала, определяемый по формуле
где - средние арифметические значения разности масс образцов водонасыщенных и высушенных для 1 и 5 минут соответственно;
λ - критерий, определяемый по формуле
где Vкi - объем капиллярных пор материала в спытываемом образце, см3;
ΔVк1 - объем воды, поглощенной капиллярами материала за 1 мин, см3;
τ′ - относительное приведенное время, зависящее от размеров и формы испытываемых образцов, табулировано.
Способ поясняется следующим описанием его сущности и операций. Изначально принимают во внимание состав испытываемого цементного материала, то есть сведения о содержании по массе его компонентов (цемента, мелкого и крупного заполнителя и воды) в единице объема материала. Затем определяют капиллярную пористость растворной части материала по формуле
где W - объем воды затворения в 1 л уплотненной смеси материала, см3;
П, Щ - содержание по массе заполнителей в 1 л уплотненной смеси материала, соответственно мелкого и крупного, г;
β1,β2 - водопоглощение заполнителей в долях от их массы за время перемешивания и уплотнения смеси соответственно мелкого и крупного, см3/г;
γщ - истинная плотность крупного заполнителя, г/см3;
К5 - стехиометрическая константа по ГОСТ 10060.4, (табл.1);
ΔV′ - удельная текущая контракция применяемого цемента к моменту испытаний материала по МИ 2486, см3/г;
С - содержание по массе цемента в 1 л уплотненной смеси, г.
Если состав цементного материала неизвестен, то капиллярную пористость определяют по формуле
где m, mк, mc - суммарная масса кусков раздробленного образца испытываемого материала соответственно в исходном (воздушно-сухом) состоянии после кипячения, полного высушивания, г;
m0, V0 - соответственно масса и объем образца в воздушно-сухом состоянии до его дробления, г;
γw - плотность воды при t = 20oС, г/см3;
D - коэффициент, табулировано (табл. 2 и 3);
f - коэффициент, табулировано (табл.4).
Образцы для испытания раскалывают на 2 части по ГОСТ 10180.
Сушку образцов производят при температуре (105±5)oС, а гидроизоляцию боковых граней каждой части производят парафином или лыжной мазью.
Показатель степени n функции, аппроксимирующей кинетику водонасыщения в интервале 1-5 минут, определяют по формуле
где - средние арифметические значения разности масс проб водонасыщенных и высушенных соответственно для 1 и 5 мин.
Объем воды ΔVк1, поглощенной капиллярами за 1 мин, при известном составе цементного материала производят по формуле
здесь коэффициенты К3 и К6 протабулированы (табл.1).
При неизвестном составе материала объем ΔVк1 определяют по формуле
Эквивалентное капиллярное давление Рк вычисляют по формуле
где А1 - константа, табулировано (табл.5), МПасм6;
М1 - параметр, интегрально отражающий особенности строения капилляров и эффект "перетекания", вычисляют по формулам
для бетона с крупным заполнителем - M=6+300 Пк3/2,
для мелкозернистого бетона - M=12+540 Пк3/2.
Объем капиллярных пор в материале испытываемого образца определяют по формуле
где V - объем испытываемого образца, см3.
Критерий λ вычисляют по формуле
где τ′ - относительное приведенное время, зависимое от размеров и формы испытываемых образцов, табулировано (табл.5).
Способ осуществляют следующим образом.
Проводят ускоренное определение водонепроницаемости бетона пяти составов на портландцементе 400-ДО Мордовского и Белгородского заводов, гранитном заполнителе фракции 5-20 и кварцевом песке с модулем крупности 2,0. Из смесей каждого состава изготавливают по 3 образца-куба размером 100•100•100 мм. Образцы хранят в течение стандартного срока 28 суток при температуре (20±2)oС и относительной влажности (95±5)%. Рассчитывают для каждого состава бетона его капиллярную пористость.
Все образцы раскалывают на две части, каждую из них высушивают при температуре (105±5)oС до постоянной массы и гидроизолируют парафином их грани боковые по отношению к поверхности раскола, помещают пробы в эксикатор, где их охлаждают до температуры (20±2)oС. Все пробы после охлаждения взвешивают и затем каждую поочередно погружают поверхностью раскола в ванну с водой при температуре (20±2)oС и последующим взвешиванием определяют их массу при водонасыщении за 1 и 5 мин.
Затем для каждого состава бетона вычисляют:
- средние арифметические значения разности масс частей водонасыщенных и высушенных для 1 и 5 минут, то есть
- вычисляют по этим данным показатель степени n функции, аппроксимирующей кинетику капиллярного водонасыщения;
- определяют расчетом объем воды ΔVк1, поглощенной капиллярами за 1 минуту;
- вычисляют эквивалентное капиллярное давление Рк при водонасыщении;
- вычисляют объем Vк капиллярных пор в испытываемых образцах;
- вычисляют критерий λ капиллярного водонасыщения образцов.
Водонепроницаемость бетона устанавливают равной тому значению давления Рi, последовательно подставляемого, начиная с 0,2 МПа, и увеличиваемого с каждым шагом на 0,05 МПа, в формулу 1, при котором результат вычисления по ней отличается от числового значения критерия λ не более чем на 5%.
Одновременно, из смесей бетонов вышеприведенных составов, были изготовлены образцы-кубы размером 100•100•100 мм и образцы-цилиндры размером ⊘ 150•100 мм, которые также были подвергнуты испытаниям на водонепроницаемость по способу-прототипу и по базовому способу согласно ГОСТ 12730.5.
Результаты определения приведены в табл.6.
Из анализа результатов реализации заявляемого способа и их сопоставления с результатами испытаний по способу-прототипу и по ГОСТ 12730.5 следует, что предлагаемый способ действительно обладает рядом преимуществ, а именно более высокой точностью, меньшей длительностью и трудоемкостью.
По сравнению с прототипом реализация заявляемого способа позволила повысить точность определения водонепроницаемости на 30-40% (см. сравнение с базовыми данными по ГОСТ 12730.5). Длительность испытаний бетона 5 составов по заявленному способу составила 5 часов, по способу-прототипу 6 суток, а по ГОСТ 12730.5 - 12 суток. Для реализации заявляемого способа изготовлено в два и три раза меньше образцов, чем соответственно по способу-прототипу и ГОСТ 12730.5.
Автору не известны технические решения со сходными заявленному способу признаками с достижением отмеченных положительных эффектов, что дает основание считать предложенный способ, обладающим существенными отличиями.
Источники информации
1. ГОСТ 12730.5. Бетоны. Методы определения водонепроницаемости. Раздел 2.
2. ГОСТ 12730.5. Бетоны. Методы определения водонепроницаемости. Приложение 4.
3. СНиП 2.03.11. Защита строительных конструкций от коррозии.
4. Рекомендации МИ 300.5-94 "Безнапорный метод определения показателей водонепроницаемости бетона и раствора для средне- и низконапорных сооружений" (введены в действие 01.01.1995).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ ЦЕМЕНТНЫХ МАТЕРИАЛОВ | 1992 |
|
RU2045071C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОНЕПРОНИЦАЕМОСТИ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ | 2014 |
|
RU2558824C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПЕРЕДАТОЧНОЙ ФУНКЦИИ ИЗМЕРИТЕЛЬНОЙ СИСТЕМЫ | 1997 |
|
RU2142141C1 |
СПОСОБ ПОЛУЧЕНИЯ СТАНДАРТНЫХ ОБРАЗЦОВ ВОДЫ | 1993 |
|
RU2036457C1 |
ГИДРОАКУСТИЧЕСКАЯ ИЗМЕРИТЕЛЬНАЯ СИСТЕМА | 2000 |
|
RU2199835C2 |
ВИХРЕВАЯ МЕЛЬНИЦА | 2002 |
|
RU2209672C1 |
ВОЛОКОННО-ОПТИЧЕСКОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АЗИМУТАЛЬНОГО НАПРАВЛЕНИЯ НА ГИДРОАКУСТИЧЕСКИЙ МАЯК | 1996 |
|
RU2105990C1 |
СПОСОБ ВИХРЕВОГО ИЗМЕЛЬЧЕНИЯ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2166993C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОНЕПРОНИЦАЕМОСТИ ЦЕМЕНТНЫХ МАТЕРИАЛОВ | 2012 |
|
RU2487351C1 |
САМООРИЕНТИРУЮЩИЙСЯ ВЕРТИКАЛЬНЫЙ СЕЙСМОПРЕОБРАЗОВАТЕЛЬ | 1995 |
|
RU2142150C1 |
Изобретение относится к промышленности строительных материалов, а именно к контролю качества бетонов, растворов и цементного камня. Технический результат - повышение точности и сокращение длительности определения. Способ определения водонепроницаемости цементных материалов включает высушивание образцов до постоянной массы, раскалывание образцов на две части, гидроизоляцию их боковых поверхностей, водонасыщение через поверхности раскола за 1 и 5 мин соответственно и определение водопоглощения материалов, при котором находят эквивалентное капиллярное давление в материале и показатель степени кинетики водонасыщения материала, определяют объем капиллярных пор растворной части материала, а водонепроницаемость цементного материала рассчитывают по формуле где Pi - искомая водонепроницаемость, МПа, которую находят путем последовательной подстановки в формулу численных значений Pi до попадания расчетного значения параметра λ′ в интервал, определяемый неравенством 0,95λ<λ′<1,05λ; Рк - эквивалентное капиллярное давление, возникающее при водонасыщении материалов, МПа; n - показатель степени кинетики водонасыщения материала, определяемой по формуле где - средние арифметические значения разности масс образцов водонасыщенных и высушенных для 1 и 5 мин соответственно; λ - критерий, определяемый по формуле где Vкi - объем капиллярных пор материала, см3; ΔVк1 - объем воды, поглощенной капиллярами материала за 1 мин, см3; τ′ - относительное приведенное время, зависящее от размеров и формы испытываемых образцов, протабулировано. 6 табл.
Способ определения водонепроницаемости цементных материалов, включающий высушивание образцов до постоянной массы, гидроизоляцию их боковых поверхностей, водонасыщение и определение водопоглощения материалов, отличающийся тем, что перед гидроизоляцией боковых поверхностей образцы раскалывают на две части, водонасыщают их через поверхность раскола за 1 и 5 мин соответственно, находят эквивалентное капиллярное давление в материале в зависимости от капиллярной пористости растворной части материала и объема поглощенной воды и показатель степени кинетики водонасыщения материала, определяют объем капиллярных пор растворной части материала, а водонепроницаемость цементных материалов рассчитывают по формуле
где Pi - искомая водонепроницаемость, МПа, которую находят путем последовательной подстановки в формулу ее численных значений Pi, начиная с Pi= 0,2 МПа и увеличивая его с каждым шагом на 0,05 МПа до попадания расчетного значения параметра λ′ в интервал, определяемый неравенством 0,95λ<λ′<1,05λ;
Рк - эквивалентное капиллярное давление, возникающее при водонасыщении материалов, МПа;
n - показатель степени кинетики водонасыщения материала, определяемый по формуле
где - средние арифметические значения разности масс образцов водонасыщенных и высушенных для 1 и 5 мин соответственно;
λ - критерий, определяемый по формуле
где Vкi - объем капиллярных пор материала в испытываемом образце, см3;
ΔVк1 - объем воды, поглощенной капиллярами материала за 1 мин, см3;
τ′ - относительное приведенное время, зависящее от размеров и формы испытываемых образцов, табулировано.
Устройство для определения водонепроницаемости строительных конструкций | 1980 |
|
SU935752A2 |
УСТРОЙСТВО для ОПРЕДЕЛЕНИЯ ВОДОНЕПРОНИЦАЕМОСТИ | 0 |
|
SU245436A1 |
НОСОВОЙ ПРОМЫВОЧНЫЙ КАТЕТЕР | 2015 |
|
RU2695725C1 |
DE 3628955 A1, 10.03.1988. |
Авторы
Даты
2002-08-20—Публикация
2001-03-05—Подача