СПОСОБ РАБОТЫ УСТРОЙСТВА ДЛЯ ОЖИЖЕНИЯ ГАЗА И УСТРОЙСТВО ДЛЯ ОЖИЖЕНИЯ ГАЗА Российский патент 2002 года по МПК F25J1/00 F25B9/04 

Описание патента на изобретение RU2191957C1

Изобретение относится к области создания охлаждающих и сжижающих устройств, работающих на использовании свойств расширяющегося газового потока.

Известен способ работы устройства для ожижения газа, включающий разделение исходного потока сжатого газа на две части, охлаждение первой части в рекуперативном теплообменнике, а второй части - в охладителе-теплообменнике с последующим их смешением, расширением и отделением образовавшейся жидкой фазы от газообразной фазы, которую подают в рекуперативный теплообменник обратным потоком, причем перед охлаждением первую часть исходного потока подают в вихревую трубу, из которой отводят холодный и горячий потоки, при этом горячий поток охлаждают в теплообменнике-охладителе, например наружного охлаждения, и направляют в рекуперативный теплообменник прямым потоком, а холодный поток подмешивают к одному из потоков рекуперативного теплообменника [1].

Такой способ реализуется в конструкции, описанной в [1]. При этом известное устройство для ожижения газа содержит источник сжатого газа, соединенный параллельно с охладителем-теплообменником и рекуперативным теплообменником, которые, далее, объединены и сообщены через расширитель с сосудом, имеющим жидкостную и газовую полости, последняя из которых соединена с обратным потоком рекуперативного теплообменника, причем перед рекуперативным теплообменником установлена вихревая труба, горячий патрубок которой через теплообменник-охладитель, например наружного охлаждения, соединен с каналом прямого потока рекуперативного теплообменника, а холодный патрубок соединен с одним из потоков рекуперативного теплообменника.

Хотя такая вихревая труба частично и срабатывает давление в первой части потока, однако вторая часть исходного потока, имеющая исходное повышенное давление, все равно попадает в канал прямого потока теплообменника, а это заставит конструктора, проектирующего такой теплообменник, выполнить его более прочным, массивным и более дорогим. Это является недостатком.

Задачей изобретения является уменьшение указанного недостатка, т.е. изобретение позволяет уменьшить рабочее давление рекуперативного теплообменника и, следовательно, появляется возможность выполнить его менее массивным и менее дорогим.

Поставленная задача решается тем, что давление второй части исходного потока после охладителя-теплообменника срабатывают во второй вихревой трубе.

Предлагаемый способ работы устройства для охлаждения реализуется в конструкции изображенной на фиг. 1.

Входной патрубок 1, связанный с источником сжатого газа (не показан), соединен с разделителем потока рабочей среды (тройником-разделителем) 2. Тройник-разделитель 2 имеет патрубки 3 и 4. Патрубок 3 одновременно является входом в двухпоточную вихревую трубу 5. Вихревая труба имеет еще два патрубка - горячий 6 и холодный 7. Горячий патрубок 6 вихревой трубы 5 через канал теплообменника-охладителя 8 соединен со входом 9 прямого потока 10 рекуперативного теплообменника 11. Холодный патрубок 7 вихревой трубы 5 через тройник-смеситель 12 соединен с входом 13 обратного потока 14 теплообменника 11. Выход 15 обратного потока 14 через тройник-смеситель 16 соединен с выходом 17 устройства для ожижения.

Патрубок 4 через охладитель-теплообменник 18 соединен со входом 19 второй вихревой трубы 20. Эта вихревая труба также имеет горячий 21 и холодный 22 концы (патрубки). Холодный конец 22 вихревой трубы 20 через тройник-смеситель 23 соединен с выходом 24 прямого потока 10 рекуперативного теплообменника 11. Выход 24 прямого потока теплообменника 11 через тройник-смеситель 23, через канал прямого потока 25 второго рекуперативного теплообменника 26 и через дроссель-расширитель 27 соединен с сосудом-накопителем 28 жидкого газа. Сосуд-накопитель 28 жидкого газа имеет жидкостную 29 и газовую 30 полости. Газовая полость 30 через канал обратного потока 31 теплообменника 26, через тройник-смеситель 12, через канал обратного потока 14 теплообменника 11, через тройник-смеситель 16 соединен с выходным патрубком 17 устройства для ожижения газа. К тройнику-смесителю 16 присоединен горячий конец 21 второй вихревой трубы 20. Над охладителем-теплообменником 18 расположен воздушный вентилятор 32, который организует второй поток 33 этого теплообменника.

Такое исполнение охладителя-теплообменника 18 позволяет для предварительного охлаждения потока газа использовать низкие температуры наружного воздуха при эксплуатации ожижителей природного газа в условиях северных газовых месторождений, где очень низкая среднегодовая, а особенно - зимняя температура воздуха. Но этот же второй поток 33 охладителя-теплообменника 18 может быть организован не только потоком воздуха от вентилятора, но и хладоагентом от постороннего холодильника, например фреонового, аммиачного, пропанового и т.п.(показан на фиг. 5).

Рассматриваемое устройство для реализации предлагаемого способа работает следующим образом. Поступающее через входной патрубок 1 рабочее тело (сжатый газ) в тройнике-разделителе 2 разделяется на два потока: первый из них через патрубок 3 поступает на вход первой вихревой трубы 5. Второй поток - через патрубок 4 образует внутренний поток охладителя-теплообменника 18, где охлаждается и поступает на вход второй вихревой трубы 20.

Первый поток, поступая через патрубок 3 в первую вихревую трубу 5, вновь разделяется на два потока - горячий 6 и холодный 7. Горячий поток 6 вихревой трубы 5, проходя через канал теплообменника-охладителя 8, остывает, достигает температуры, близкой к температуре входного потока 1, и поступает на вход 9 прямого потока 10 рекуперативного теплообменника 11. В этом теплообменнике 11 прямой поток 10 выхолаживается от холодного обратного потока 14 и поступает в тройник-смеситель 23.

Второй поток, поступая через патрубок 4 в охладитель-теплообменник 18, выхолаживается и в охлажденном состоянии поступает на вход 19 второй вихревой трубы 20. В вихревой трубе 20 поток вновь разделяется на два - горячий 21 и холодный 22. Горячий поток 21 через тройник-смеситель 16 сбрасывается на 17 выход устройства для ожижения, а холодный поток 22 подается на тройник-смеситель 23, где смешивается с охлажденным потоком, поступающим из канала прямого потока 10 теплообменника 11, после чего по каналу прямого потока 25 теплообменника 26 и через дроссель-расширитель 27 подается в сосуд-накопитель 28 жидкого газа. В пневмодросселе 27 газ дросселируется (расширяется и дополнительно охлаждается). В нем образуются две фазы: жидкая и газообразная. Поступая в сосуд-накопитель 28 жидкого газа, двухфазный поток разделяется: жидкость скапливается на дне - в жидкостной полости 29, откуда может быть слита, а холодная газообразная фаза, скапливаясь в газовой полости 30, уходит вверх, проходит через канал 31 теплообменника 26, где выхолаживает прямой поток 25 и поступает в тройник-смеситель 12, где, смешиваясь с холодным потоком 7 первой вихревой трубы 5, организует холодный обратный поток 14 теплообменника 11. В этом теплообменнике 11 обратный поток 14 отбирает тепло от прямого потока 10, тем самым выхолаживает его. Нагретый от прямого потока 10 обратный поток 14 через тройник-смеситель 16 направляется в выходной патрубок 17 устройства для ожижения газа, а жидкий криопродукт сливается из холодоприемника и отправляется потребителю. В зависимости от термодинамической задачи применяемый рекуперативный теплообменник может состоять или только из одной части 11 (фиг. 2), или из двух частей 11 и 31 (фиг. 1, 3, 4), или из трех частей (фиг. 5).

Предварительное срабатывание давления второго потока 4 газа во второй вихревой трубе 20 позволяет уменьшить рабочее давление прямого потока рекуперативного теплообменника. Оно определяется только пониженным (по сравнению с входным) давлением, вырабатываемым горячим концом 6 первой вихревой трубы 5, поэтому появляется возможность выполнить рекуперативный теплообменник 11 менее массивным и менее дорогим, как это и поставлено в задаче данного изобретения.

При практическом исполнении предлагаемой конструкции возможны следующие варианты.

Холодный поток 22 от второй вихревой трубы 20 можно смешать не только с прямым потоком 10 теплообменника 11 в тройнике-смесителе 23 (фиг. 1), но и с обратным потоком 32 теплообменника 26 на входе в тройник-смеситель 12 и теплообменник 11 (фиг. 3) без явного ухудшения общих термодинамических характеристик рассматриваемого устройства для ожижения газа.

Холодный поток 7 от первой вихревой трубы 5 можно смешать в тройнике-смесителе 12 не только с обратным потоком 31 теплообменника 26 на входе обратного потока 14 теплообменника 11 (фиг.1), но и с выходом прямого потока 10 на входе прямого потока 26 теплообменника 26 (фиг.4) также без явного ухудшения общих термодинамических характеристик рассматриваемого устройства для ожижения газа.

В зависимости от принятого варианта рекуперативный теплообменник (или его части) будет иметь различные расчетные характеристики.

Охлаждение второго потока, организуемого через патрубок 4, рационально подбирать таким образом, чтобы горячий конец 21 второй вихревой трубы 20 через тройник-смеситель 16 выдавал на выход 17 только теплый поток газа. Этим обеспечится необходимый КПД устройства.

Но если второй поток, организуемый через патрубок 4, охлаждать в охладителе-теплообменнике 18 до более низких температур, например, от фреоновой холодильной машины, состоящей из компрессора 34, конденсатора 35, дросселя 36 и испарителя 37 - фиг.5, то горячий конец 21 второй вихревой трубы 20 ожижителей по фиг.1,2,3 и 4 будет выдавать уже охлажденный газ (по сравнению с температурой на входе 1). И если его просто выбрасывать на выход 17 из устройства, то резко снижается КПД всего устройства. Для предотвращения этого в систему теплообменников необходимо ввести третий дополнительный рекуперативный теплообменник 38 (фиг.5), в котором будет осуществляться рекуперация (возврат) дополнительного холода, вырабатываемого горячим концом вихревой трубы 20.

Таким образом, предварительное срабатывание давления газа во второй вихревой трубе, являющейся более эффективным расширителем-охладителем, чем обычный дроссель, позволяет не только повысить термодинамическую эффективность, но и уменьшить рабочие давления в теплообменниках, что упрощает их и уменьшает их стоимость.

В этом состоит основная техническая сущность изобретения.

Предлагаемое техническое решение может быть применимо не только в системах ожижения газа, но и для других целей, например для работы в рефрижераторном режиме, в кондиционерах, в специальных технологиях и т.п.

Источники информации
1. Ю. Г. Белостоцкий, А. М. Кошелев. Заявка 99127359/06 (029678) от 30.12.1999 г. Способ работы устройства для ожижения газа и устройство для ожижения газа.

Похожие патенты RU2191957C1

название год авторы номер документа
СПОСОБ РАБОТЫ УСТРОЙСТВА ДЛЯ ОЖИЖЕНИЯ ГАЗА И УСТРОЙСТВО ДЛЯ ОЖИЖЕНИЯ ГАЗА 1999
RU2178129C2
СПОСОБ РАБОТЫ ОЖИЖИТЕЛЯ ГАЗА 2001
  • Белостоцкий Ю.Г.
  • Кошелев А.М.
RU2215249C2
СПОСОБ РАБОТЫ ОЖИЖАЮЩЕГО УСТРОЙСТВА И ОЖИЖАЮЩЕЕ УСТРОЙСТВО 2003
  • Белостоцкий Ю.Г.
RU2265167C2
СПОСОБ РАБОТЫ ОХЛАЖДАЮЩЕГО УСТРОЙСТВА И ОХЛАЖДАЮЩЕЕ УСТРОЙСТВО 2000
RU2193739C2
СПОСОБ ПОДОГРЕВА РАСШИРЯЮЩЕГОСЯ ПОТОКА ГАЗА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1998
  • Белостоцкий Ю.Г.
  • Никулихин В.Г.
  • Кошелев А.М.
RU2143650C1
СПОСОБ РАБОТЫ ВИХРЕВОГО ОЖИЖАЮЩЕГО УСТРОЙСТВА И ВИХРЕВОЕ ОЖИЖАЮЩЕЕ УСТРОЙСТВО 2002
  • Белостоцкий Ю.Г.
RU2254526C2
СПОСОБ РАБОТЫ УСТРОЙСТВА ДЛЯ ОХЛАЖДЕНИЯ И УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ 2001
  • Белостоцкий Ю.Г.
RU2214564C2
СПОСОБ РАБОТЫ УСТРОЙСТВА ДЛЯ ОХЛАЖДЕНИЯ И УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ 2001
  • Белостоцкая Н.Ф.
  • Белостоцкий Ю.Г.
RU2241920C2
СПОСОБ РАБОТЫ УСТРОЙСТВА ДЛЯ ОХЛАЖДЕНИЯ И УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ 1996
  • Артуров С.В.
  • Белостоцкий Ю.Г.
  • Никулихин В.Г.
  • Смирнов А.П.
RU2149324C1
СПОСОБ РАБОТЫ ХОЛОДИЛЬНОГО УСТРОЙСТВА И ХОЛОДИЛЬНОЕ УСТРОЙСТВО 2004
  • Белостоцкий Юрий Григорьевич
RU2282801C2

Иллюстрации к изобретению RU 2 191 957 C1

Реферат патента 2002 года СПОСОБ РАБОТЫ УСТРОЙСТВА ДЛЯ ОЖИЖЕНИЯ ГАЗА И УСТРОЙСТВО ДЛЯ ОЖИЖЕНИЯ ГАЗА

Исходный поток сжатого газа разделяют на две части. Первую часть пропускают через первую вихревую трубу, а ее горячий поток после охлаждения подают на вход прямого потока рекуперативного теплообменника. Вторую часть потока вначале охлаждают и только потом подают на вход второй вихревой трубы. Горячий поток второй вихревой трубы подают на выход из устройства, а оба холодных потока обеих вихревых труб подмешивают к потокам рекуперативного теплообменника. В результате удается снизить рабочие давления в рекуперативном теплообменнике и он становится менее металлоемким и менее дорогим. 2 с. и 6 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 191 957 C1

1. Способ работы устройства для ожижения газа, включающий разделение исходного потока сжатого газа на две части, охлаждение первой части в рекуперативном теплообменнике, а второй части - в охладителе с последующим их смешением, расширением и отделением образовавшейся жидкой фазы от газообразной фазы, которую подают в теплообменник обратным потоком, причем перед охлаждением первую часть исходного потока подают в вихревую трубу, из которой отводят холодный и горячий потоки, при этом горячий поток охлаждают в теплообменнике, например, наружного охлаждения и направляют в рекуперативный теплообменник прямым потоком, а холодный поток подмешивают к одному из потоков рекуперативного теплообменника, отличающийся тем, что давление второй части исходного потока после охладителя срабатывают во второй вихревой трубе, из которой отводят холодный и горячий потоки. 2. Способ работы устройства для ожижения газа по п.1, отличающийся тем, что холодный поток второй вихревой трубы смешивают с прямым потоком на выходе из теплообменника, а горячий направляют на выход из устройства. 3. Способ работы устройства для ожижения газа по п.1, отличающийся тем, что холодный поток второй вихревой трубы смешивают с обратным потоком на входе в теплообменник, а горячий направляют на выход из устройства. 4. Способ работы устройства для ожижения газа по пп.2 и 3, отличающийся тем, что горячий поток второй вихревой трубы вначале вводят в обратный поток на входе в дополнительный теплообменник. 5. Устройство для ожижения газа, содержащее источник сжатого газа, соединенный параллельно с охладителем и теплообменником, которые далее объединены и сообщены через расширитель с сосудом, имеющим жидкостную и газовую полости, последняя из которых соединена с обратным потоком теплообменника, причем оно снабжено установленной перед теплообменником вихревой трубой, горячий патрубок которой через теплообменник, например, наружного охлаждения соединен с каналом прямого потока рекуперативного теплообменника, а холодный патрубок соединен с одним из потоков рекуперативного теплообменника, отличающееся тем, что выход охладителя соединен со входом второй вихревой трубы, горячий конец которой сообщен с выходом устройства для ожижения, а холодный конец которой соединен с одним из потоков рекуперативного теплообменника. 6. Устройство для ожижения газа по п.5, отличающееся тем, что холодный конец второй вихревой трубы соединен с каналом прямого потока на выходе из теплообменника. 7. Устройство для ожижения газа по п.5, отличающееся тем, что холодный конец второй вихревой трубы соединен с каналом обратного потока на входе в теплообменник. 8. Устройство для ожижения газа по пп.6 и 7, отличающееся тем, что горячий конец второй вихревой трубы соединен со входом обратного потока дополнительного теплообменника.

Документы, цитированные в отчете о поиске Патент 2002 года RU2191957C1

УСТАНОВКА ОСУШКИ СЖАТОГО ВОЗДУХА 1991
  • Пиралишвили Ш.А.
  • Софронов А.Н.
  • Михайлов В.В.
RU2015463C1
Вихревая нагревательная установка 1985
  • Пиралишвили Шота Александрович
  • Галкин Олег Валерьевич
SU1219883A1
US 3815375 А, 11.06.1974
US 4584838 А, 29.05.1996
0
SU180645A1

RU 2 191 957 C1

Авторы

Белостоцкий Ю.Г.

Кошелев А.М.

Даты

2002-10-27Публикация

2001-07-03Подача