СПИРАЛЬНЫЙ ТЕПЛООБМЕННИК Российский патент 2002 года по МПК F28D7/04 

Описание патента на изобретение RU2192593C1

Изобретение относится к теплообменной технике, в частности к кожухотрубным теплообменникам, используемым для подогрева или охлаждения как жидких, так и газообразных сред.

Известен теплообменник, содержащий кожух с поярусно размещенными внутри него секциями трубчатых спиралей, расположенных вокруг центральной трубы, разделенной продольной перегородкой на входной и выходной коллекторы, причем к первому подключены входные участки спиралей первой секции, а ко второму - выходные участки спиралей последней секции, при этом секции соединены между собой с помощью переходников, размещенных вне кожуха, а спирали в смежных ярусах имеют противоположную закрутку (авторское свидетельство 557251, кл. F 28 D 7/04, опубл. 05.05.77).

Недостатком данного теплообменника является размещение переходников вне кожуха, что не допускает возможности ремонта и технологической очистки спиральных секций теплообменника без полного демонтажа конструкции.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является спиральный теплообменник, содержащий корпус с входным и выходным патрубками для прохода первой теплообменной среды и с направляющей его потока, выполненной в виде вертикальной разделительной стенки, изготовленной из металлической ленты, скрученной в спираль, в которой зафиксированы параллельные друг другу секции спиральных теплообменных труб, которые в каждой секции выполнены с плотно прилегающими друг к другу витками, причем концы каждой трубы подсоединены к входному и выходному коллекторам второй теплообменной среды, один из которых расположен с зазором во внутреннем центральном канале, образованном спиральными теплообменными трубами, а другой - снаружи спиралей теплообменных труб, при этом направляющие потока первой теплообменной среды выполнены секциями спиральных теплообменных труб второй теплообменной среды, образующими каналы для прохода через них к выходному патрубку первой теплообменной среды (патент Франции 2308071, кл. F 28 D 7/04, опубл. 12.11.76 - прототип).

Недостатком конструкции известного спирального теплообменника является слабая интенсивность теплообмена.

Технической задачей изобретения является создание новой конструкции спирального теплообменника с повышенной интенсивностью теплообмена.

Поставленная задача решается при создании конструкции спирального теплообменника, содержащего корпус с входным и выходным патрубками для прохода первой теплообменной среды и с направляющими ее потока, а также с размещенными с зазором внутри него параллельными друг другу секциями спиральных теплообменных труб, которые в каждой секции выполнены с плотно прилегающими друг к другу витками, причем концы каждой трубы подсоединены к входному и выходному коллекторам второй теплообменной среды, один из которых расположен с зазором во внутреннем центральном канале, образованном спиральными теплообменными трубами, а другой - снаружи спиралей теплообменных труб, при этом направляющие потока первой теплообменной среды выполнены секциями спиральных теплообменных труб второй теплообменной среды, образующими каналы для прохода через них к выходному патрубку первой теплообменной среды, в котором, согласно изобретению, в каналах для прохода к выходному патрубку первой теплообменной среды размещены радиальные направляющие ребра, при этом отношение наружного диаметра спиралей теплообменных труб в каждой секции к внутреннему диаметру составляет 1,5-3, а отношение диаметра теплообменной трубы к ширине канала для прохода первой теплообменной среды составляет 2-10.

В таком спиральном теплообменнике, согласно изобретению, во входном патрубке может быть установлен конусный обтекатель для потока первой теплообменной среды.

Размещение в каналах для прохода к выходному патрубку первой теплообменной среды радиальных направляющих ребер, а также соблюдение отношения наружного диаметра спиралей теплообменных труб в каждой секции к внутреннему диаметру, лежащего в пределах 1,5-3, а отношения диаметра теплообменной трубы к ширине канала для прохода первой теплообменной среды, лежащего в пределах 2-10 повышает интенсивность теплообмена.

Возможная установка во входном патрубке корпуса конусного обтекателя для потока первой теплообменной среды способствует непосредственному направлению ее к периферии внутреннего объема корпуса, то есть к началу прохода среды по каналам, образованным секциями спиральных теплообменных труб, что еще больше повышает интенсивность теплообмена.

Пограничные значения предела (1,5-3), в котором расположены значения отношений наружного диаметра спиралей теплообменных труб в каждой секции к ее внутреннему диаметру, которые обеспечивают решение технической задачи, являются оптимальными. Так при значениях отношений, меньших 1,5, которое является границей экономической эффективности, для решения технической задачи требуется установка неоправданно многого количества секций таких спиралей. При значениях отношений, больших 3, эффективность крайних наружных рядов витков спиралей снижается: для теплоносителя внутри спиральных труб из-за увеличения диаметра спирали, а для теплоносителя снаружи спиральных труб из-за уменьшения скорости потока к наружным виткам. Таким образом, при значениях отношения наружного диаметра спиралей теплообменных труб в каждой секции меньших 1,5 и больших 3 снижается интенсивность теплообмена.

Пограничные значения предела (2-10), в котором расположены значения отношений диаметра теплообменной трубы в каждой секции к ширине прохода теплоносителя между секциями, которые обеспечивают решение технической задачи, являются оптимальными.

Так при значениях отношений, меньших 2, канал между секциями получается достаточно широким, чтобы выступы труб создали достаточную для обеспечения высокой степени интенсивности теплообмена турбулентность теплоносителя. При значениях отношений, больших 10, увеличиваются гидравлические сопротивления в канале между секциями. Однако наряду с некоторым повышением интенсивности теплообмена значительно возрастают энергетические расходы на преодоление потоком теплоносителя гидравлических сопротивлений в каналах между секциями спиральных теплообменных труб.

Таким образом, при значениях отношений диаметра теплообменной трубы в каждой секции к ширине прохода теплоносителя между секциями, меньшими 2, снижается интенсивность теплообмена, а при значениях этих отношений, больших 10, интенсивность теплообмена возрастает экономически неоправданно по сравнению с расходами, идущими на обеспечение энергетических затрат процесса.

Сопоставительный анализ заявляемого спирального теплообменника и прототипа выявляет наличие отличительных признаков у заявляемого устройства по сравнению с наиболее близким аналогом, что позволяет сделать вывод о соответствии заявляемого решения критерию "новизна".

Наличие отличительных признаков дает возможность получить положительный эффект, заключающийся в создании новой конструкции спирального теплообменника с повышенной интенсивностью теплообмена.

Поскольку при исследовании объекта изобретения по патентной и научно-технической литературе не выявлено решений, содержащих признаки заявляемого изобретения, отличные от прототипа, следует сделать вывод, что заявляемое изобретение соответствует критерию "существенные отличия".

Использование заявляемого изобретения в теплообменной технике обеспечивает ему соответствие критерию "промышленная применимость".

Конструкция, соответствующая заявляемому изобретению, изображена на чертеже, на котором на фиг.1 представлен общий вид в разрезе заявляемого теплообменника, на фиг.2 - разрез по А-А, на фиг.3 представлено направление движения теплообменной среды в межспиральном канале.

В спиральном теплообменнике, содержащем корпус 1 с входным 2 и выходным 3 патрубками для прохода первой теплообменной среды и с направляющими ее потока, а также с размещенными с зазором 4 внутри него параллельными друг другу секциями 5 спиральных теплообменных труб 6, которые в каждой секции выполнены с плотно прилегающими друг к другу витками, причем концы каждой трубы подсоединены к входному 7 и выходному 8 коллекторам второй теплообменной среды, один из которых 8 расположен с зазором во внутреннем центральном канале 9, образованном спиральными теплообменными трубами 6, а другой коллектор 7 расположен снаружи спиральных секций 5, направляющие потока первой теплообменной среды выполнены секциями 5 спиральных теплообменных труб 6 второй теплообменной среды, образующими каналы 10 для прохода первой теплообменной среды к выходному патрубку 3 в зависимости от конструкции теплообменника либо через внутренний центральный канал 9, либо через зазор 4, в каналах 10 размещены радиальные направляющие ребра 11, при этом отношение наружного диаметра спирали труб в каждой секции 5 к внутреннему диаметру составляет 1,5-3, а отношение диаметра трубы 6 к ширине канала 10 составляет 2-10.

В таком спиральном теплообменнике во входном патрубке 2 корпуса 1 может быть установлен конусный обтекатель 12 для потока первой теплообменной среды.

Спиральный теплообменник работает следующим образом.

Первая теплообменная среда проходит через входной патрубок 2 и далее радиально по каналам 10, образованным плоскими секциями 5 спиральных теплообменных труб 6 к выходному патрубку 3.

Вторая теплообменная среда проходит внутри спиральных теплообменных труб 6 секций 5 от входного коллектора 7 к выходному коллектору 8.

Размещение в каналах 10 радиальных направляющих ребер 11, а также соблюдение отношения наружного диаметра спирали 6 в каждой секции 5 к внутреннему диаметру, лежащего в пределах 1,5-3, и соблюдение отношения диаметра трубы 6 к ширине канала 10, лежащего в пределах 2-10, повышает интенсивность теплообмена в теплообменнике по сравнению с прототипом.

Возможная постановка обтекателя 12 во входном патрубке 2 способствует отклонению потока первой теплообменной среды к началу прохода ее по радиальным каналам 10, также увеличивая интенсивность теплообмена.

Похожие патенты RU2192593C1

название год авторы номер документа
ТЕПЛООБМЕННИК 1994
  • Артемов Н.С.
  • Симаненков Э.И.
  • Артемов В.Н.
  • Ильин В.П.
RU2080536C1
УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ И ОСУШКИ ГАЗОВОЙ СРЕДЫ 2000
  • Куликов И.П.
RU2182687C2
СЕКЦИОННЫЙ ПРОМЕЖУТОЧНЫЙ СОСУД ДЛЯ АММИАЧНЫХ ПРОМЫШЛЕННЫХ ХОЛОДИЛЬНЫХ УСТАНОВОК 1999
  • Овчаренко В.С.
  • Афонский В.П.
  • Генин Л.Л.
  • Шувалов А.И.
RU2159906C1
Спиральный теплообменник 1980
  • Лазарев Виктор Иванович
  • Лобачев Анатолий Иванович
  • Шалаев Виктор Сергеевич
  • Шлыков Юрий Павлович
  • Шишкин Геннадий Михайлович
SU901795A1
ТЕПЛООБМЕННИК 2008
  • Друк Михаил Петрович
  • Миронов Руслан Вячеславович
  • Кузнецов Дмитрий Владиславович
  • Беззатеев Алексей Константинович
RU2386095C2
ТЕПЛООБМЕННЫЙ АППАРАТ 2012
  • Белоусов Владимир Дмитриевич
  • Залялов Валерий Адельзянович
RU2486425C1
Шахтный воздухоохладитель 1980
  • Журавленко Виктор Яковлевич
  • Хавин Александр Алексеевич
  • Дорощук Лариса Владимировна
  • Боровков Всеволод Петрович
SU900020A1
Спиральный теплообменник 1990
  • Ткачук Андрей Яковлевич
  • Макаров Сергей Анатольевич
  • Потапов Вадим Алексеевич
  • Ерисов Сергей Васильевич
SU1772569A1
ТЕПЛООБМЕННОЕ УСТРОЙСТВО 1999
  • Комиссаров С.П.
  • Ульянин С.Г.
RU2160421C1
ОТОПИТЕЛЬНЫЙ ГАЗОВЫЙ КОТЕЛ 2002
  • Зубков Александр Кузьмич
  • Романенко Виктор Васильевич
RU2215246C1

Иллюстрации к изобретению RU 2 192 593 C1

Реферат патента 2002 года СПИРАЛЬНЫЙ ТЕПЛООБМЕННИК

Изобретение относится к теплообменной технике и может быть использовано для подогрева или охлаждения жидких и газообразных сред. В спиральном теплообменнике, содержащем корпус с входным и выходным патрубками для прохода первой теплообменной среды и с направляющими ее потока, а также с размещенными с зазорами внутри него параллельными друг другу секциями спиральных теплообменных труб, соединенных с входными и выходными коллекторами второй теплообменной среды, которые в каждой секции выполнены с плотно прилегающими друг к другу витками, а их концы установлены с зазором во внутреннем центральном канале, образованном центральными теплообменными трубами, и снаружи спиралей теплообменных труб, направляющие потока первой теплообменной среды образованы секциями спиральных теплообменных труб второй теплообменной среды, в каналах для прохода к выходному патрубку первой теплообменной среды размещены радиальные направляющие ребра, при этом отношение наружного диаметра спиралей теплообменных труб в каждой секции к внутреннему диаметру составляет 1,5-3, а отношение диаметра теплообменной трубы к ширине канала для прохода первой теплообменной среды составляет 2-10. Такое выполнение теплообменника позволяет повысить интенсивность теплообмена при неизменных энергетических затратах. 3 ил.

Формула изобретения RU 2 192 593 C1

1. Спиральный теплообменник, содержащий корпус с входным и выходным патрубками для прохода первой теплообменной среды и с направляющими ее потока, а также с размещенными с зазорами внутри него параллельными друг другу секциями спиральных теплообменных труб, которые в каждой секции выполнены с плотно прилегающими друг к другу витками, причем концы каждой трубы подсоединены к входному и выходному коллекторам второй теплообменной среды, один из которых расположен с зазором во внутреннем центральном канале, образованном центральными теплообменными трубами, а другой - снаружи спиралей теплообменных труб, при этом направляющие потока первой теплообменной среды выполнены секциями спиральных теплообменных труб второй теплообменной среды, образующими каналы для прохода через них к выходному патрубку первой теплообменной среды, отличающийся тем, что в каналах для прохода к выходному патрубку первой теплообменной среды размещены радиальные направляющие ребра, при этом отношение наружного диаметра спиралей теплообменных труб в каждой секции к внутреннему диаметру составляет 1,5-3, а отношение диаметра теплообменной трубы к ширине канала для прохода первой теплообменной среды составляет 2-10. 2. Теплообменник по п. 1, отличающийся тем, что во входном патрубке установлен конусный обтекатель для потока первой теплообменной среды.

Документы, цитированные в отчете о поиске Патент 2002 года RU2192593C1

УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ПРОСТРАНСТВЕННЫМ ПОЛОЖЕНИЕМ И УСТРОЙСТВО ДЛЯ ПРЕЦИЗИОННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 2005
  • Камия Сумио
  • Ивасе Хисао
  • Нагаике Тецуя
  • Эда Хироси
  • Чжоу Либо
RU2308071C1
Спиральный теплообменник 1974
  • Берман Яков Аронович
  • Марр Юрий Николаевич
  • Рафалович Александр Пинхусович
SU557251A1
GB 999883 А, 07.09.1962
DE 3925795 А1, 07.02.1991
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1

RU 2 192 593 C1

Авторы

Орберг А.Н.

Шевченко Е.П.

Виноградов В.В.

Даты

2002-11-10Публикация

2001-12-11Подача