Изобретение относится к области очистки газов от сероводорода с получением элементарной серы и может быть использовано в газовой, нефтяной, нефтеперерабатывающей, химической и других отраслях промышленности.
Известен поглотительный раствор (авт.св. 1443945 "Способ очистки газа от сероводорода"), содержащий бихромат щелочного металла, хлористый аммоний и воду при следующем соотношении компонентов, г/л:
Бихромат щелочного металла - 30-150
Хлористый аммоний - 25-200
Вода - Остальное
Недостатком этого состава является большой расход окислителя, что делает его экономически не эффективным.
Наиболее близким к предлагаемому раствору является состав (Пат. 2109553 "Поглотительный раствор для очистки газов от сероводорода"), содержащий следующие компоненты, мас.%:
Соль трехвалентного железа - 0,5-4,0
Комплексон - 2,5-12,0
Щелочь - 1,5-5,0
Бишофит - 15,0-20,0
Бихромат щелочного металла - 0,7-1,5
Карбамид - 0,5-15,0
Вода - Остальное
Недостатком этого состава является его повышенная стоимость и низкая технологичность.
Задачей изобретения является улучшение технических показателей поглотительного раствора, снижение его стоимости и повышение экономической эффективности всего процесса очистки газов от сероводорода.
Поставленная задача достигается тем, что состав поглотительного раствора для очистки газов от сероводорода включает бишофит, щелочь, окислитель сероводорода и воду, в качестве окислителя содержит хромат щелочного металла в количестве 0,3-3,0 мас.% в расчете на ион хромового ангидрида СrО4 -2, природный бишофит в количестве 37,0-41,5 мас.%, гидроксид щелочного металла не менее 0,1 мас. % в расчете на гидроксил-иона ОН-1, при этом рН раствора не менее 7-8,6 ед.
Соли хромовой кислоты (хроматы) обладают сильными окислительными свойствами, что позволяет использовать их водные растворы для извлечения сероводорода из углеводородных газов.
Процесс взаимодействия сероводорода с хромовым ангидридом описывается уравнением
2СrO4 -2 + 3H2S + 2Н2О --> 2Сr(ОН)3 + 3S + 40Н-1
и идет с получением элементарной серы и образованием неагрессивного гидроксида хрома Сr(ОН)3, который выпадает в виде нерастворимого осадка.
Процесс регенерации отработанного окислителя, т.е. окисление гидроксида хрома с получением первоначального сорбента можно проводить кислородом воздуха по уравнению
4Сr(ОН)3 +8 0Н-1 + 302 --> 4CrO4 -2 + 10Н2О
Химизм реакции нейтрализации сероводорода растворами хромата показывает, что наличие хромового ангидрида позволяет одновременно извлекать из обрабатываемого газа сероводород и частично двуокись углерода, количество которого зависит напрямую от количества нейтрализуемого сероводорода хромовым ангидридом, что не влияет на эффективность и селективность процесса нейтрализации сероводорода и не приводит к дополнительным расходам химреагентов.
Растворимость углекислого газа в воде при 20oС составляет 878 см3/л. При нейтрализации сероводорода щелочь будет реагировать с растворенным углекислым газом по уравнению реакции
OH-1 + Со2 --> НСО3 -1
Образование бикарбонат-иона в водном растворе придает ему слабощелочные свойства (рН около 8,6 ед), а более высокие значения рН среды нельзя получить даже в насыщенных растворах из-за гидролиза бикарбоната в водных растворах по уравнению
НСО3 -1 + Н2О --> ОН-1 + Н2СО3
Следовательно, процесс нейтрализации сероводорода в присутствии углекислого газа хроматами будет выглядеть следующим образом
2СrO4 -2 + 3H2S + 4СО3 + 2Н2О --> 2Сr(ОН)3 + 3S + 4НСO3 -1
Тогда регенерация отработанного хромового окислителя кислородом описывается уравнением
4Сr2(ОН)3 + 3O2 + 8НСО3 -1 --> 4Cr04 -2+ 8CO2 + 10Н2О
Таким образом нерастворимый гидроксид хрома регенерируется до растворимого хромата, т.е. до первоначального состояния, после чего производится процесс отделения серы и возвращения отрегенерированного раствора сорбента в систему очистки.
Суммарные реакции процесса очистки газов хромовым окислителем от сероводорода и, частично, от двуокиси углерода с получением элементарной серы и выделением углекислого газа с отработанным воздухом описываются уравнениями
Проведены исследования по изучению нейтрализующей способности хроматного сорбента к сероводороду и его регенерации кислородом воздуха в зависимости от рН и температуры среды. Результаты исследований показаны на фиг.1 и 2.
Оценку эффективности процессов восстановления хромового ангидрида СrО4 -2 сероводородом и окисления нерастворимого гидроксида хрома Сr(ОН)3 кислородом воздуха осуществляли аналитическим путем, определяя концентрацию хром-ионов в растворе.
Из фиг.1 следует, что реакция окисления сероводорода хромовым ангидридом в области рН 6-9 ед проходит наиболее эффективно. Процесс регенерации (окисление) восстановленного хромового сорбента Cr(OH)3 кислородом воздуха имеет почти прямолинейную зависимость от рН среды и с ростом величин рН реакционная способность плавно снижается.
Согласно фиг.2, можно отметить, что скорость процесса нейтрализации сероводорода данным составом достигает максимальных величин в интервале температур от минус 10 до плюс 50oC, где степень очистки газа будет выше 99% и содержание сероводорода в очищенном углеводородном газе будет соответствовать требованиям отечественных стандартов.
В отличие от процесса нейтрализации сероводорода процесс регенерации сорбента кислородом имеет другую картину, где степень регенерации достигает наибольшую величину в интервале температур от 30 до 60oС.
Следовательно, для очистки углеводородных газов от сероводорода с помощью хроматного сорбента процессы нейтрализации сероводорода и регенерации сорбента желательно проводить в области нейтральных и слабощелочных величин, а также в температурном интервале от минус 10 до плюс 50o С.
Ингибирующий эффект хромового ангидрида в водных растворах объясняется тем, что он способен образовывать на поверхности конструкционных материалов из различных металлов (сталь, медь, алюминий и др.) очень прочные защитные оксидные пленки. Например, на поверхности деталей из стали образуется защитная пленка из окислов железа, преимущественно γ - Fe2О3, содержащая адсорбированные хромат-ионы, что предотвращает дальнейшее разрушение металла.
Коррозионную активность водных растворов природного бишофита, содержащих хромовый ангидрид, определили в лабораторных условиях, максимально приближенных к производственным, где была учтена скорость движения раствора.
В табл.1 приведены результаты испытания поглотительного бишофитового раствора со средней плотностью 1170 кг/м3, содержащего в качестве сорбента хромат калия в количестве 1,5 мас.%, рН раствора 8,6 ед на коррозионную активность образцов из стали.
Бишофит применяется в качестве катализатора реакции окисления сероводорода, а главное как антифризный агент для расширения рабочего температурного интервала реакции окисления H2S и окисления гидроксида хрома кислородом воздуха, снижения температуры замерзания поглотительного раствора и повышения эффективности очистки при температурах ниже стандартных, что немаловажно для работы в промысловых условиях с минимальными энергетическими затратами и является основным фактором сокращения эксплуатационных затрат.
В качестве бишофита используется Волгоградский бишофитовый рассол, основу которого составляет шестиводный хлорид магния МgСl26Н2О (90-96 мас.%) и содержащий различные соли щелочных, щелочноземельных и редкоземельных элементов.
Плотность бишофитового раствора, составляющего основу поглотительного состава и определяющего его физико-химические параметры, находится в пределах 37,0 - 41,5 мас. %.
Таким образом, температура замерзания рабочего раствора будет находиться в интервале от минус 34 до минус 40oС.
Массовое содержание сорбента (хромата) берется из расчета оптимальных концентраций с целью обеспечения необходимой степени очистки углеводородных газов и ингибирующей эффективности коррозионных процессов.
На основе полученных результатов исследований технология очистки углеводородных газов от сероводорода предлагаемым составом проводится в два этапа:
- нейтрализация сероводорода хромовым ангидридом в среде катализатора природного бишофита с получением элементарной серы и нерастворимого гидроксида хрома;
- регенерация восстановленного сорбента кислородом воздуха (окисление гидроксида хрома) с получением первоначального хромового сорбента.
Основные технические показатели поглотительного раствора (в трех возможных вариантах) приведены в табл.2.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА | 2006 |
|
RU2320399C1 |
СПОСОБ ОЧИСТКИ ВОДНЫХ РАСТВОРОВ ОТ ЖЕЛЕЗА | 2006 |
|
RU2320546C1 |
ПОГЛОТИТЕЛЬНЫЙ РАСТВОР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА | 1996 |
|
RU2109553C1 |
СПОСОБ ОЧИСТКИ УГЛЕВОДОРОДНОЙ ПРОДУКЦИИ ОТ СЕРОВОДОРОДА | 2006 |
|
RU2320398C2 |
СОСТАВ ПРИСАДКИ К СЕРОСОДЕРЖАЩИМ ТОПЛИВАМ ДЛЯ ИХ ДЕСУЛЬФУРИЗАЦИИ В ПРОЦЕССЕ СЖИГАНИЯ | 2006 |
|
RU2318012C1 |
ПОГЛОТИТЕЛЬНЫЙ РАСТВОР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ КИСЛЫХ ПРИМЕСЕЙ | 2007 |
|
RU2363524C1 |
СПОСОБ ОЧИСТКИ ГАЗА ОТ СЕРОВОДОРОДА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2116121C1 |
АНТИСЕПТИЧЕСКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ ДЛЯ ДРЕВЕСИНЫ | 2006 |
|
RU2307735C1 |
АБСОРБЕНТ ДЛЯ ОЧИСТКИ ГАЗА ОТ СЕРОВОДОРОДА | 2010 |
|
RU2447927C1 |
СПОСОБ ОЧИСТКИ УГЛЕВОДОРОДНОЙ ПРОДУКЦИИ ОТ КИСЛЫХ ПРИМЕСЕЙ | 2008 |
|
RU2356604C1 |
Изобретение относится к окислительным процессам очистки газов от сероводорода с получением элементарной серы. Поглотительный раствор содержит в качестве окислителя хромат щелочного металла в количестве 0,3-3,0 мас.% в расчете на ион-хромового ангидрида CrO4 -2, природный бишофит в количестве 37,0-41,5 мас.%, гидроксид щелочного металла не менее 0,1 мас.% в расчете на гидроксил-иона и воду, при этом рН раствора составляет 7-8,6 ед. Поглотительный раствор обладает низкой температурой замерзания до минус 40oC и способностью нейтрализовать сероводород с эффективностью выше 99,8% в температурном режиме от минус 10 до плюс 50oС. 2 табл., 2 ил.
Поглотительный раствор для очистки газов от сероводорода, включающий бишофит, щелочь, окислитель сероводорода и воду, отличающийся тем, что он в качестве окислителя содержит хромат щелочного металла в количестве 0,3-3,0 мас. % в расчете на ион хромового ангидрида CrO4 -2, природный бишофит в количестве 37,0-41,5 мас. %, гидроксид щелочного металла не менее 0,1 мас. % в расчете на гидроксид-иона ОН-1, при этом рН раствора составляет 7-8,6 ед.
ПОГЛОТИТЕЛЬНЫЙ РАСТВОР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА | 1996 |
|
RU2109553C1 |
Способ получения криолита | 1990 |
|
SU1801101A3 |
АБСОРБЕНТ ДЛЯ ОЧИСТКИ ГАЗА ОТ СЕРОВОДОРОДА | 1991 |
|
RU2046092C1 |
EP 0612556 А1, 31.08.1994 | |||
US 4849191 А, 18.07.1989 | |||
Огнетушитель | 0 |
|
SU91A1 |
ПОВЫШЕНИЕ СТАБИЛЬНОСТИ РАСТВОРОВ ДЛЯ ИНЪЕКЦИЙ | 1999 |
|
RU2224499C2 |
US 4705676 А, 10.11.1987. |
Авторы
Даты
2002-12-10—Публикация
2000-02-21—Подача