Изобретение относится к очистке газов, преимущественно углеводородных, в частности к окислительно-жидким процессам очистки газов от сероводорода с получением элементарной серы и может быть использовано в газовой, нефтяной, нефтеперерабатывающей, химической и других отраслях промышленности.
Известны способы очистки сероводородсодержащих газов с поглощением сероводорода растворами алканоламинов - МЭА, ДЭА, ТЭА (Коуль А.Л., Резенфельд Ф. С. Очистка газов. -М., 1962. -С. 21-49), где нейтрализация осуществляется путем физико-химической абсорбции, а регенерация сорбента - путем высокотемпературной десорбции. Основная схема процессов очистки газов растворами алканоламинов состоит из абсорбера колонного типа, теплообменников, отпарной колонны и холодильников.
Эти способы имеют ряд недостатков: они энергоемки, металлоемки, установки для очистки сложны, кроме того, требуется большой расход сорбентов, а для очистки кислых газов с получением элементарной серы необходимо строительство установки Клауса, хвостовые газы которой также необходимо доочищать от сероводорода. При малых объемах очищаемого газа методы становятся неэкономичными.
Наиболее близким к предлагаемому является способ очистки газа от сероводорода путем контактирования его со взвесями гидроксида трехвалентного железа с последующей регенерацией поглотительного раствора кислородом воздуха в эжекторе под давлением (а.с. СССР N 645687, кл. B 01 D 53/14, 1977).
Однако этот способ имеет низкие скорости реакции нейтрализации и регенерации, он нетехнологичен из-за малой экономичности и низкой работоспособности в промысловых условиях.
Наиболее близкой к предлагаемой является установка для двухступенчатой очистки газа от сероводорода, содержащая последовательно соединенные реактор-трубопровод, через который прямотоком пропускают исходный газ с поглотительным раствором (1 ступень очистки), орошаемый абсорбер колонного типа (II ступень очистки), газосепараторы и регенератор колонного типа, в котором воздух барботируется через поглотительный раствор (Техника и технология бурения скважин и добычи нефти на нефтяных месторождения ТАССР. - Бугульма, 1983. -С. 111-115.
Недостатком этой установки является малая производительность по газу при относительно высоких энергетических затратах и больших габаритах узлов установки, а также недостаточно высокая степень очистки. Поэтому для небольших объемов перерабатываемого газа она экономически неэффективна.
Технологическая задача, решаемая изобретением, заключается в увеличении скорости нейтрализации сероводорода и регенерации отработанного поглотительного раствора в целях полной очистки газа от сероводорода с минимальными энергетическими и другими затратами при работе в непрерывном и цикличном режимах.
Указанная цель достигается тем, что очистка газа от сероводорода заключается в нейтрализации сероводорода путем диспергирования сероводородсодержащего газа с жидким поглотительным раствором, содержащим в качестве основного окислителя соединения трехвалентного железа как в растворенном, так и в мелкодисперсном состояниях в среде катализатора, приготовленного на основе природного бишофита, в состав которого входит бихромат щелочного металла, с последующей регенерацией поглотительного раствора кислородом путем идентичного диспергирования его с атмосферным воздухом.
Техническая задача, решаемая изобретением, заключается в повышении эффективности процесса очистки при одновременном упрощении конструкции установки, снижении ее металло- и энергоемкости.
Поставленная задача решается тем, что установка для очистки газа включает два идентичных узла нейтрализации и регенерации (абсорбер и регенератор), где каждый из них содержит струйный эжектор с диспергатором и последовательно присоединенный трубопроводный змеевикообразный реактор за каждым смесителем.
В разработанной технологии в качестве основного окислителя сероводорода предлагаются соединения трехвалентного железа, например, гидроксид железа Fe(OH)3, который находится в поглотительном растворе в двух формах: растворенной и мелкодисперсной. Две формы гидроксида Fe+3 ведут себя по отношению к сероводороду по-разному и выполняют различные технологические задачи. Это способствует повышению вероятности контактирования с сероводородом и кислородом, ускорению реакции нейтрализации и регенерации и в конечном итоге - повышению эффективности всего процесса очистки в целом.
Мелкодисперсные частицы гидроксида Fe+3, полученные при смешивании разбавленных солей железа с щелочным раствором бишофитового катализатора, играют основную роль при диспергировании исходного газа и воздуха с поглотительным раствором посредством эжекторного диспергатора. При этом образуются более устойчивые коллоидные смеси "газ - раствор" и "воздух - раствор" с низкой дисперсностью. Это способствует при одной ступени очистки газа получению высоких скоростей реакции нейтрализации и регенерации, тем самым - высокой эффективности процесса очистки.
Растворенный гидроксид Fe+3 образуется при взаимодействии его с комплексообразователем и находится в виде "железо - комплексон" (LFe+3). Несвязанный Fe (OH)3 присутствует в виде мелкодисперсных частиц, полученных из разбавленных растворов трехвалентного железа, например хлорного железа, в условиях интенсивного перемешивания в среде катализатора, содержащего хлорид магния.
Применяемый в качестве катализатора процессов нейтрализации и регенерации - солевой водный раствор из природного бишофита, основу которого составляет хлорид магния с содержанием бихромата щелочного металла для дополнительного окисления сероводорода и уменьшения коррозии.
Применяемый катализатор обладает следующими физико-химическими свойствами:
Плотность при 20oC, кг/м3 - 1150-1200
Динамическая вязкость при 20oC, мПа•с - 2,0-4,0
pH - 6,8-8,5
Температура замерзания, oC - -30oC -50
Температура кипения, oC - 110-120
Коррозионная активность к стали при 20-100oC, мм/год - 0,002-0,10
Предлагаемый способ очистки газа от сероводорода осуществляется следующим образом.
Поглотительный раствор, содержащий в качестве основного окислителя гидроксид трехвалентного железа в растворенном и мелкодисперсном состояниях в среде бишофитового катализатора, содержащего бихромат щелочного металла (дополнительный окислитель), смешивают с сероводородсодержащим газом с образованием газожидкостной дисперсной смеси; при этом происходят следующие основные реакции с сероводородом:
2 Fe(OH3) + 3H2S _→ Fe2S3 + 6H2O;
LFe+3 + H2S + 2OH- _→ LFe+2 + S + 2H2O;
2CrO
Очищенный от сероводорода газ удаляют, а отработанный поглотительный раствор восстанавливают путем смешивания его с атмосферным воздухом; при этом происходит процесс регенерации окислителей кислородом воздуха по уравнениям:
2Fe2S3 + 3O2+ 6H2O _→ 4Fe(OH)3 + 6S;
LFe+2 + O2 + 2H2O _→ LFe+3 + 4OH-;
2CR(OH)3+O2+3OH- _→ 2CrO
Процесс очистки газа идет с выделением элементарной серы в виде водяной пульпы. Суммарная реакция процесса нейтрализации сероводорода протекает следующим образом:
H2S + 1/2 O2 _→ S + H2O.
Таким образом, разработанный процесс очистки газа состоит из двух раздельных последовательных операций: во-первых, нейтрализация сероводорода поглотительным раствором, во-вторых, регенерация поглотительного раствора кислородом воздуха. Обе операции ведутся самостоятельно в условиях окружающей среды при температуре в пределах от -20 до +50oC, т.е. без энергозатрат.
На основе вышесказанного была разработана установка для очистки газа от сероводорода (см. чертеж), которая содержит центробежный насос 1, нейтрализатор (абсорбер), состоящий из эжекторного диспергатора 2 и трубопроводного реактора 3, газосепаратор 4, регенератор, выполненный аналогично абсорберу в виде эжекторного диспергатора 5 и трубопроводного реактора 6, и второй сепаратор 7.
Установка работает следующим образом.
Исходный сероводородсодержащий газ, подлежащий обработке, подают на всасывающий вход диспергатора 2, куда одновременно насосом 1 подают поглотительный раствор-нейтрализатор сероводорода, где происходит их смешивание и образование газожидкостной дисперсной смеси, а следовательно, и реакция нейтрализации сероводорода окислителями.
Газожидкостная смесь проходит через трубопроводный реактор 3, где и заканчивается реакция нейтрализации сероводорода, и далее поступает в газовый сепаратор 4, в котором происходит фазовое разделение. Очищенный газ удаляется из верхнего отвода сепаратора и отправляется потребителям.
Отработанный поглотительный раствор из газосепаратора 4 поступает во второй диспергатор 5, где он смешивается с атмосферным воздухом с образованием воздухожидкостной смеси и началом регенерации окислителей.
Воздухожидкостная смесь проходит через трубопроводный реактор 6, где и заканчивается реакция регенерации окислителей, далее смесь поступает в сепаратор 7, в котором происходит разделение. Отработанный воздух удаляется с верхнего отвода сепаратора в окружающую среду, а отрегенерированный (восстановленный) поглотительный раствор с нижней части сепаратора 7 возвращается вновь в цикл на повторную нейтрализацию сероводорода (на рециркуляцию).
Полученная серная пульпа отпускается на переработку.
Данная технология (способ и установка) успешно прошла лабораторные и промысловые испытания по очистке нефтяного газа от сероводорода. Степень очистки составила более 98% при работе в условиях окружающей среды без нагрева или охлаждения.
название | год | авторы | номер документа |
---|---|---|---|
ПОГЛОТИТЕЛЬНЫЙ РАСТВОР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА | 1996 |
|
RU2109553C1 |
ТЕПЛОНОСИТЕЛЬ-АНТИФРИЗ | 1997 |
|
RU2116326C1 |
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА | 2006 |
|
RU2320399C1 |
СПОСОБ ОЧИСТКИ УГЛЕВОДОРОДНОЙ ПРОДУКЦИИ ОТ КИСЛЫХ ПРИМЕСЕЙ | 2010 |
|
RU2436620C1 |
ПОГЛОТИТЕЛЬНЫЙ РАСТВОР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА | 2000 |
|
RU2193913C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ И СОСТАВ ПРИСАДКИ ДЛЯ ДЕСУЛЬФУРИЗАЦИИ СЕРОСОДЕРЖАЩИХ ТОПЛИВ | 2011 |
|
RU2451717C1 |
ОГНЕЗАЩИТНЫЙ СОСТАВ ДЛЯ ОБРАБОТКИ ДРЕВЕСИНЫ | 2011 |
|
RU2469843C2 |
СПОСОБ ОЧИСТКИ УГЛЕВОДОРОДНОЙ ПРОДУКЦИИ ОТ СЕРОВОДОРОДА | 2006 |
|
RU2320398C2 |
ФИЛЬТРУЮЩИЙ РАСТВОР ДЛЯ КАЛЬЯНА | 2011 |
|
RU2469626C1 |
СПОСОБ ОЧИСТКИ УГЛЕВОДОРОДНОЙ ПРОДУКЦИИ ОТ КИСЛЫХ ПРИМЕСЕЙ | 2008 |
|
RU2356604C1 |
Способ и установка предназначены для очистки газа от сероводорода. Способ заключается в нейтрализации сероводорода путем смешивания газа с жидким поглотительным раствором, содержащим в качестве окислителя соединения трехвалентного железа, и последующей регенерации отработанного раствора путем смешивания его с воздухом. Соединения железа одновременно находятся в растворе как в растворенном, так и в мелкодисперсном состояниях в среде катализатора на основе бишофита, содержащего бихромат щелочного металла. Установка содержит абсорбер, регенератор и сепараторы. Абсорбер и регенератор содержит струйный эжектор с диспергатором и последовательно присоединенный к ним трубопроводный змеевикообразный реактор. Степень очистки составляет 98% при работе в условиях окружающей среды без нагрева или охлаждения. 2 с. и 1 з. п. ф-лы, 1 ил.
RU 9510530 A1, 27.10.96 | |||
Способ очистки газа от сероводорода | 1981 |
|
SU1011202A1 |
Способ очистки коксового газа от сероводорода | 1978 |
|
SU704649A1 |
SU 915914 A, 1982 | |||
Способ очистки газа от сероводорода | 1977 |
|
SU645687A1 |
US 4401642 A, 1983 | |||
АНТИФРИКЦИОННЫЙ САМОСМАЗЫВАЮЩИЙ МАТЕРИАЛ | 2003 |
|
RU2254361C1 |
Ветряный двигатель | 1922 |
|
SU553A1 |
Пружинный загортач сеялки | 1979 |
|
SU738538A1 |
US 4773921 A, 1988 | |||
ЗУБЧАТОЕ КОЛЕСО | 2015 |
|
RU2588195C1 |
Техника и технология бурения скважин и добычи нефти на нефтяных м есторождениях ТА ССР | |||
- Бугульма, 1983, с | |||
Говорящий кинематограф | 1920 |
|
SU111A1 |
Коуль А.Л., Резенфел ьд Ф.С | |||
Очистка газов | |||
Водоотводчик | 1925 |
|
SU1962A1 |
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Авторы
Даты
1998-07-27—Публикация
1996-12-10—Подача