Изобретение относится к области оптического приборостроения, в частности к методам организации оптико-электронных каналов, и может быть использовано при проведении исследований прозрачных и мутных сред в медицине, биологии, биофизике, металлографии и других отраслях науки и техники.
Для оценки новизны и изобретательского уровня заявленного решения рассмотрим ряд известных технических средств аналогичного назначения.
Известные способы организации оптико-электронных каналов основаны на теории Аббе, которая для несамосветящихся объектов учитывает физиологические особенности глаза и соответствующих отделов мозга человека. Возможности таких каналов, а следовательно, и оптико-электронных приборов, в которых они реализованы, ограничены разрешающей способностью глаза и необходимостью располагать изображение на расстоянии наилучшего видения.
Известен способ организации оптико-электронного канала, согласно которому излучение от монохроматического источника (лазера) пропускают через поляризатор, фокусирующую линзу и направляют на кювету с раствором макромолекул, затем улавливают под некоторым углом к оптической оси рассеянное излучение, которое через другую фокусирующую линзу и поляризатор направляют на фотоумножитель и средства регистрации и анализа, см. П.Г. Костюк и др. "Биофизика", Высшая школа, 1988 г., с.52.
Недостатком данного способа являются ограниченные функциональные возможности, обеспечивающие лишь измерение интенсивности рассеянного излучения и не позволяющие получить визуальное изображение исследуемого объекта, что значительно снижает качество исследований.
Известен способ организации оптико-электронного канала, согласно которому излучение от источника УФ-света через монохроматор, поляризатор подают на кристалл, попеременно пропускающий левовращающую или правовращающую компоненты поляризованного света, которые направляют на кювету с оптически активным веществом, а затем на фотоэлектронный умножитель и средства регистрации, см. П.Г. Костюк и др. "Биофизика", Высшая школа, 1988 г., с.68.
По наибольшему количеству сходных признаков и достигаемому при использовании результату данное техническое решение выбрано за прототип настоящего изобретения.
Недостатком прототипа, не позволяющим достичь поставленной нами цели, является то, что данный способ организации оптико-электронного канала позволяет исследовать различные прозрачные объекты по интегральной интенсивности без возможности визуального исследования, что значительно снижает информативность исследований.
В основу настоящего изобретения положено решение задачи создания оптико-электронного канала наряду с известными возможностями обеспечивающего получение визуального изображения исследуемого объекта как в статике, так и в динамике.
Сущность заявляемого изобретения выражается в следующей совокупности существенных признаков.
Согласно изобретению указанная выше задача решается за счет того, что способ организации оптико-электронного канала для исследования прозрачных и мутных оптических сред, согласно которому излучение от источника пропускают через конденсор и направляют на емкость с исследуемым объектом, затем улавливают излучение, которое направляют на фотоумножитель и средства регистрации и анализа, характеризуется тем, что емкость с исследуемым объектом устанавливают вертикально перпендикулярно оптической оси с возможностью трехкоординатного перемещения относительно оптической оси и с возможностью поворота в плоскости, перпендикулярной оптической оси, на любой угол, при этом за емкостью с исследуемым объектом на оптической оси со стороны, противоположной источнику излучения, размещают неподвижный исследовательский объектив, изображение с которого подают на фотоумножитель и средства регистрации и анализа, в которых для визуального анализа цветного изображения используют прибор с зарядовой связью.
В этом заключается совокупность существенных признаков, обеспечивающая получение технического результата во всех случаях, на которые распространяется испрашиваемый объем правовой охраны.
Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию "новизна".
За счет реализации отличительных признаков изобретения (в совокупности с признаками, указанными в ограничительной части формулы) достигаются важные новые свойства объекта. В предложенном техническом решении достигается возможность снять ограничения, накладываемые теорией Аббе, и получить визуальные изображения исследуемого объекта с высокой степенью увеличения как в статике, так и в динамике.
Заявителю не известны какие-либо публикации, которые содержали бы сведения о влиянии отличительных признаков изобретения на достигаемый технический результат. В связи с этим, по мнению заявителя, можно сделать вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".
Сущность изобретения поясняется чертежом, где на фиг.1 представлена оптическая схема заявленного способа, на фиг.2 - схема построения изображения заявленным способом.
На одной оптической оси установлены источник излучения в виде ртутной лампы 1, конденсор 2, кювета 3 с исследуемым объектом, которая установлена на трехкоординатном предметном столике 4. За кюветой 3 с исследуемым объектом на оптической оси со стороны, противоположной ртутной лампе 1, размещен неподвижный исследовательский объектив 5, оптически связанный через призменный блок 6 с фотоумножителем 7 и прибором с зарядовой связью (ПЗС-камерой) 8.
Способ реализуют следующим образом.
Излучение от ртутной лампы 1 последовательно проходит конденсор 2, в котором оно преобразуется в коллимерный пучок. При необходимости используют набор фильтров, которые устанавливают требуемый спектральный интервал, и поляроиды, которые необходимы для исследования дихроидных задач.
Кювету 3 с исследуемым объектом устанавливают на трехкоординатном столике 4 вертикально перпендикулярно оптической оси с возможностью трехкоординатного перемещения относительно оптической оси и с возможностью поворота в плоскости, перпендикулярной оптической оси, на любой угол.
Прошедшее через исследуемый объект излучение попадает на исследовательский объектив 5, который проецирует изображение исследуемой области объекта через призменный блок 6 на матрицу ПЗС-камеры 8 и на фотоумножитель 7.
Такая организация оптического канала снимает ограничения, накладываемые теорией Аббе и физиологическими особенностями глаза, не требует получения изображения на расстоянии наилучшего видения и позволяет получить увеличение изображения исследуемой области, которое значительно превышает увеличение стандартных микроскопов, так как чувствительность ПЗС-камеры и приборов значительно превосходит чувствительность глаза.
Увеличение, достигаемое в заявленном оптико-электронном канале, Vоэк может быть определено по формуле
Vоэк=Vоб•Vэл,
где Vоб - линейное увеличение исследовательского объектива 5,
Vэл - электронное увеличение ПЗС-камеры 8, которое определяется по выражению
и где dэ - диагональ экрана дисплея,
dпзс - диагональ матрицы ПЗС-камеры.
В конкретном случае dпзс= 11,4 мм, dэ=600 мм, Vэл=50, Vоб=80, отсюда Vоэк=4000.
Такое увеличение позволяет повысить точность настройки исследуемого изображения, которая пропорциональна квадрату линейного увеличения, т.е. в данном случае в 16 раз по сравнению с традиционными микроскопами. Теоретический предел полезного увеличения в микроскопе по теории Аббе не превышает 1000А, где А - числовая апертура микроскопа, т.е. V=1000. Числовая апертура в заявленной оптико-электронной системе имеет другое значение в результате изменения рабочего отрезка объектива и отказа от применения тубусной линзы.
Увеличение исследовательского объектива определяется по формуле Ньютона:
х•х'=f•f',
где х - рабочий отрезок объектива в пространстве предмета,
х' - рабочий отрезок объектива в пространстве изображения,
f - фокусный отрезок в пространстве предмета,
f' - фокусный отрезок в пространстве изображения.
Увеличение объектива определяется по формуле
отсюда при увеличении х' уменьшается х.
При совмещении плоскости изображения с ПЗС-матрицей вырезается центральная часть изображения практически безаберрационно, что объясняет изменение апертуры объектива, которая перестает быть определяющей.
Ртутная лампа работает на просвет исследуемого объекта, что позволяет работать в УФ-диапазоне при исследованиях прозрачных и мутных сред.
Заявленный способ может быть реализован промышленным образом с использованием известных технологий и технических средств (источник света, конденсоры, объективы, ПЗС-камера, средства исследования), что обусловливает, по мнению заявителя, его соответствие критерию "промышленная применимость".
Использование заявленного решения по сравнению со всеми известными средствами аналогичного назначения обеспечивает следующие преимущества:
1. Визуализацию изображения исследуемого объекта.
2. Возможность точной настройки исследовательского объектива на плоскость исследования.
3. Возможность получения цветного изображения с высокой степенью увеличения (до 15000), сопоставимой с увеличением электронных микроскопов.
4. Отсутствие субъективности исследований при выведении динамического изображения на дисплей, который одновременно наблюдают несколько исследователей.
5. Безиммерсионность работы.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ОПТИКОЭЛЕКТРОННОГО БЕСКОНТАКТНОГО ИССЛЕДОВАНИЯ МИНЕРАЛОВ И ОРГАНИЧЕСКИХ СТРУКТУР | 2009 |
|
RU2402753C1 |
СПОСОБ БЕСКОНТАКТНОГО ПОЛИПОЛЯРИЗАЦИОННОГО ИССЛЕДОВАНИЯ МИНЕРАЛОВ И ОРГАНИЧЕСКИХ СТРУКТУР С РАЗЛИЧНЫМИ КОЭФФИЦИЕНТАМИ ПРОПУСКАНИЯ | 2011 |
|
RU2466379C1 |
СПОСОБ БЕСКОНТАКТНОЙ ПОЛИПОЛЯРИЗАЦИОННОЙ ИДЕНТИФИКАЦИИ И ОПРЕДЕЛЕНИЯ СОСТАВА И КАЧЕСТВА ШЕРСТИ И РАСТИТЕЛЬНЫХ ВОЛОКОН | 2013 |
|
RU2524553C1 |
ОПТИКО-МЕХАНИЧЕСКОЕ СОГЛАСУЮЩЕЕ УСТРОЙСТВО | 2004 |
|
RU2247418C1 |
СПОСОБ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ МИКРООБЪЕКТА (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2012 |
|
RU2525152C2 |
ДВУХФОТОННЫЙ СКАНИРУЮЩИЙ МИКРОСКОП | 2011 |
|
RU2472118C1 |
СИСТЕМА ОТКРЫТОЙ ОПТИЧЕСКОЙ СВЯЗИ | 2001 |
|
RU2212763C2 |
ВИДЕОРЕФРАКТОМЕТР | 2006 |
|
RU2315286C1 |
СПОСОБ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ОБЪЕМНЫХ ОБЪЕКТОВ ИЛИ ГЛУБОКИХ СЦЕН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2544784C2 |
МИКРОСКОП ПРОХОДЯЩЕГО И ОТРАЖЕННОГО СВЕТА | 2009 |
|
RU2419114C2 |
Изобретение относится к области оптического приборостроения, в частности к методам организации оптико-электронных каналов, и может быть использовано при проведении исследований прозрачных и мутных сред в медицине, биологии, биофизике, металлографии и других отраслях техники. В основу настоящего изобретения положено решение задачи создания оптико-электронного канала, обеспечивающего получение визуального изображения исследуемого объекта как в статике, так и в динамике. Излучение от ртутной лампы последовательно проходит конденсор, в котором оно преобразуется в коллимерный пучок. При необходимости используют набор фильтров. Кювету с исследуемым объектом устанавливают на трехкоординатном столике вертикально перпендикулярно оптической оси с возможностью трехкоординатного перемещения относительно оптической оси и с возможностью поворота в плоскости, перпендикулярной оптической оси, на любой угол. Прошедшее через исследуемый объект излучение попадает на исследовательский объектив, который проецирует изображение исследуемой области объекта через призменный блок на матрицу ПЗС-камеры и на фотоумножитель. Технический результат - возможность получения цветного изображения с увеличением до 15000, сопоставимым с увеличением электронных микроскопов. 2 ил.
Способ организации оптико-электронного канала для исследования прозрачных и мутных оптических сред, согласно которому излучение от источника пропускают через конденсор и направляют на емкость с исследуемым объектом, затем улавливают излучение, которое направляют на фотоумножитель и средства регистрации и анализа, отличающийся тем, что емкость с исследуемым объектом устанавливают вертикально перпендикулярно оптической оси с возможностью трехкоординатного перемещения относительно оптической оси и с возможностью поворота в плоскости, перпендикулярной оптической оси, на любой угол, при этом за емкостью с исследуемым объектом на оптической оси со стороны, противоположной источнику излучения, размещают неподвижный исследовательский объектив, изображение с которого подают на фотоумножитель и средства регистрации и анализа, в которых для визуального анализа цветного изображения используют прибор с зарядовой связью.
Устройство для автоматического регулирования температуры | 1948 |
|
SU83384A1 |
ГАЗОДИНАМИЧЕСКИЙ СПОСОБ САМОРЕГУЛИРОВАНИЯ ВОЗДУШНОГО ПОТОКА В ВЕНТИЛЯЦИОННОЙ СИСТЕМЕ | 2011 |
|
RU2564589C2 |
US 5117376, 26.05.1992 | |||
СПОСОБ ВИЗУАЛИЗАЦИИ И ОЦЕНКИ ИЗЛУЧЕНИЙ ЧЕЛОВЕКА | 1992 |
|
RU2073831C1 |
JP 6137820, 20.05.1994 | |||
ФОСФОРОСКОП-ФОСФОРИМЕТР | 1994 |
|
RU2080588C1 |
УСТРОЙСТВО ПЕРЕДАЧИ ГОРИЗОНТАЛЬНОГО НАПРАВЛЕНИЯ С ОДНОГО ГОРИЗОНТА НА ДРУГОЙ | 1999 |
|
RU2152591C1 |
ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ПОЛОЖЕНИЯ | 1990 |
|
RU1795706C |
US 1619846 А, 10.10.1996 | |||
УСТРОЙСТВО ДЛЯ УСТАНОВКИ ПЛАНШЕТА В ИММУНОФЕРМЕНТНОМ АНАЛИЗАТОРЕ | 1993 |
|
RU2080585C1 |
Авторы
Даты
2003-02-10—Публикация
2000-11-01—Подача