Изобретение относится к солнечной энергетике и может быть использовано для получения воды из воздуха в условиях безводных районов в любой точке планеты, например, пустынных, с использованием солнечной энергии.
Известна установка для осушки газа, содержащая магистраль осушаемого газа с влагоотделителями, регенеративными теплообменниками и многокаскадным термоэлектрическим холодильником, при этом осушка производится многоступенчатым вымораживанием в результате взаимодействия с холодными ребрами теплообменника (SU 1180655 А, 23.09.1985).
Недостатком данной установки является невозможность использования ее в условиях пустыни.
Известен способ производства воды из воздуха и устройство для его осуществления, в котором сформированный по меньшей мере одним вентилятором поток влажного воздуха охлаждают в первом теплообменнике промежуточным теплоносителем и в охлаждающем элементе холодильной машины до температуры ниже точки росы с последующим отводом сконденсированной воды, далее поток воздуха нагревают во втором теплообменнике промежуточным теплоносителем и в элементе холодильной машины, предназначенном для отвода тепла, при этом расходы промежуточного теплоносителя и влажного воздуха могут регулироваться одновременно или последовательно в зависимости от климатических параметров атмосферного воздуха, при охлаждении влажного воздуха ниже температуры замерзания воды направление потока влажного воздуха периодически изменяют, направляя его сначала в испаритель холодильной машины, предназначенный для отвода тепла, а затем в конденсатор, при этом сконденсированную воду очищают, фильтруют и минерализуют (RU 2151973 С1, 27.06.2000).
Данная установка позволяет повысить производительность по выходу воды, но является сложной и не применима в условиях малонаселенных пустынь с отсутствием электроэнергии.
Наиболее близкой к предложенной является гелиоустановка для cбopа питьевой воды из воздуха, содержащая корпус в виде пирамиды, в нижней части которого установлен резервуар для сбора и хранения воды, наружная поверхность корпуса выполнена в виде фрамуг с приводом, образующих воздухозаборники, покрытые снаружи солнечными элементами, внутри корпуса около воздухозаборников установлены фильтры, далее по воздуху - ребристые испарители для получения воды из воздуха, по оси корпуса установлена труба для вывода осушенного воздуха с вентилятором в верхней части (SU 1751608 А1, 30.07.1992).
Данное устройство является сложным в обслуживании и имеет в наличии электроприборы.
Технической задачей изобретения является получение воды из воздуха в условиях пустыни и обезвоженных районов в простой по конструкции установке, без использования электроприборов и минимальном техобслуживании, но с использованием солнечной энергии.
Указанная техническая задача решается тем, что в солнечной установке для получения воды из воздуха, содержащей корпус с окнами ввода и вывода воздуха, солнечные элементы на наружной поверхности корпуса и размещенный внутри него испаритель холодильной машины с внутренней ребристой поверхностью, а в нижней части - сборник воды, согласно изобретению, установка выполнена непрерывного или периодического действия, корпус установки выполнен в виде вертикальной или наклонной теплоизолированной шахты либо с четырьмя стенками, либо частично открытой с теневой северной стороны, окна ввода воздуха расположено в верхней части, а вывода воздуха - в нижней части шахты, испаритель холодильной машины выполнен преимущественно многоступенчатым в виде змеевиковых труб, расположенных и на одном уровне и по высоте шахты на определенном расстоянии друг от друга, при этом входные концы труб расположены или выше или ниже выходных концов для обеспечения самотечного течения хладагента, а оребрение выполнено в виде пакета гофрированных поверхностей, плотно соединенных с трубами и перпендикулярно расположенных к этим трубам и вдоль труб вертикально вниз и установленных на расстоянии друг от друга в пакете, солнечные элементы выполнены в виде солнечных коллекторов, содержащих абсорбент или теплоноситель для регенерации хладагента. В установке солнечные коллекторы могут быть соединены с генератором, выполненным в виде котла для испарения хладагента, состоящего из смеси двух жидкостей, подключенного в свою очередь к конденсатору и к змеевиковым трубам испарителя, другой вход труб которого соединен с конденсатором, а их выход - с генератором через теплообменник. Также в установке трубы конденсатора могут быть выполнены плоскими и изогнутыми.
На фиг. 1 изображен общий вид солнечной установки, на фиг.2 - второй вариант выполнения установки, на фиг.3 - третий вариант выполнения установки, на фиг. 4 - четвертый вариант выполнения установки, на фиг.5 - вид спереди пятого варианта заполнения установки, на фиг.6 - пятый вариант выполнения установки, вид сзади.
Солнечная установка для получения воды из воздуха содержит вертикальный или наклонный корпус в виде теплоизолированной шахты 1 с окном в верхней части для ввода воздуха и окном для вывода воздуха в нижней части, расположенный там же сборник воды, солнечные коллекторы 5, содержащие абсорбент или жидкость для регенерации хладагента, и размещенный внутри шахты 1 испаритель холодильной машины, выполненный многоступенчатым в виде змеевиковых труб 4, расположенных на одном уровне и по высоте корпуса на определенном расстоянии друг от друга, при этом входные концы труб 4 расположены или выше или ниже выходных концов труб для обеспечения самотечного течения хладагента, и оребрения в виде пакета гофрированных поверхностей 6, плотно соединенных и расположенных перпендикулярно к трубам 4 вертикально вниз и установленных на расстоянии друг от друга в пакете. Холодильная установка содержит генератор 7 в виде котла.
Солнечная установкам работает следующим образом.
Теплоноситель солнечного коллектора, разогреваясь от инсоляции, конвективно перемещается под генератор 7 и доводит до кипения раствор, составляющие которого при смешивании выделяют холод. Пар наилегчайшей составляющей раствора превращается в жидкость в конденсаторе 2 и течет в нижерасположенный теплообменник 3, а затем в трубы 4, выполняющие роль охладителей - смесителей, для смешивания с тяжелой составляющей раствора генератора 7, которая вливается в трубы теплообменника 3 со дна котла генератора 7 и, охладившись, вливается в смесители - трубы 4. Разогретая смесь из теплообменника 3 выливается в генератор 7. Направления этих течений в холодильнике установки показаны стрелками. Охлажденный в теплообменнике 3 шахты 1 воздух тяжелеет, отдает воду пластинам труб 4 и стремится вниз, увлекая за собой все новые порции воздуха. Часть нисходящих потоков проходит через конденсатор 2, интенсифицируя его охлаждение и тем самым ускоряя движение потока смеси, а следовательно, и увеличивая производство холода.
В установке на фиг.2 тепло от солнечных коллекторов 5 превращается в холод одним из известных способов в генераторе 7 холодильной машины. Жидкость (хладагент), охлажденная в этих генераторе 7, заполняет трубы 4 и передает холод на оребренные поверхности 6 испарителей для охлаждения воздуха в шахте 1. По мере охлаждения воздух "тяжелеет" и стремится вниз тем быстрее, чем ниже его температура, и в образовавшееся разрежение за нисходящим потоком охлажденного воздуха устремляется свежая порция теплого воздуха без использования вентилятора.
Стенки шахты 1 надежно теплоизолированы для исключения тормозящего влияния на скорость нисходящего потока воздуха по шахте 1 вниз тем с большей скоростью, чем быстрее он охлаждается.
По мере увеличения температуры хладагента в трубах 4 увеличиваются конвективные потоки и забор холода из генератора 2. Для этого выходные концы труб 4 расположены ниже входных концов, и чем выше эта разница, тем больше холодной жидкости потечет по трубам 4 самотеком. Прикрепленные к этим трубам поверхности 6 оребрения для увеличения теплообмена могут иметь различные профили сечения для создания вихревых потоков, увеличивающие контактирующее число молекул воздуха, а следовательно, и большее количество молекул воды из него будет оседать на этих пластинах, так как их температура всегда ниже температуры точки росы. Накопившаяся вода будет стекать вниз вместе с охлажденным и осушенным воздухом.
Трубы 4 испарителей могут быть выполнены разделенными поверхностями 6 оребрения так, чтобы расстояние между поверхностями оребрения испарителя не повлияло бы на скорость падения охлажденного потока из-за повышения температуры молекул воздуха в зоне зазора между поверхностями.
На фиг. 3-6 изображены другие варианты выполнения установки, работающие аналогичным образом.
Установка может быть расположена и будет давать воду и охлажденный воздух в любых зонах нашей планеты, так как не требует электроэнергии и будет работать надежно и долго, поскольку не имеет движущихся (трущихся) частей. Количество добываемой из воздуха воды будет зависеть от мощности установки (коллекторов, холодильника, сечения и высоты корпуса). Все это при одновременном ее упрощении и удешевлении за счет снижения разности температуры теплоносителя солнечных коллекторов и наружного воздуха.
При этом, возможно добиться высоких скоростей и объемов потока воздуха в шахтах не только вертикальной их установкой, но и под углом к горизонту с учетом рельефа местности или домостроений населенных пунктов, чтобы можно было создать искусственный микроклимат на полях, в ущельях, улицах.
С целью обеспечения резкого увеличения площади поверхности конденсатора 2 и количества воздуха, проходящего через него, и максимального образования конденсата в течение всех суток, необходимо установить шахту 1 над центром теплоемкой воздухопроницаемой со всех сторон пористой структурой и развитой поверхностью (как составляющих, так и всей конструкции конденсатора).
название | год | авторы | номер документа |
---|---|---|---|
ГЕЛИОУСТАНОВКА | 2001 |
|
RU2196112C1 |
СОЛНЕЧНЫЙ КОЛЛЕКТОР | 2001 |
|
RU2194928C1 |
Установка экстракции воды из воздуха на базе солнечного модуля с параболоторическим концентратором и двигателем Стирлинга | 2018 |
|
RU2694308C1 |
СОЛНЕЧНЫЙ КОЛЛЕКТОР | 2001 |
|
RU2194927C1 |
СОЛНЕЧНЫЙ КОЛЛЕКТОР | 2001 |
|
RU2194929C1 |
ВОЗДУХОПЛАВАТЕЛЬНАЯ КОНВЕКЦИОННАЯ ТРУБА ИСАЕВА | 2005 |
|
RU2294861C2 |
УСТРОЙСТВО ДЛЯ ЭФФЕКТИВНОГО ПОЛУЧЕНИЯ ПРЕСНОЙ ВОДЫ ПУТЕМ КОНДЕНСАЦИИ ВОДЯНЫХ ПАРОВ ИЗ ВОЗДУХА | 1999 |
|
RU2169032C1 |
ВОЛНОВАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2001 |
|
RU2187692C1 |
Устройство для низкотемпературного охлаждения | 2017 |
|
RU2661363C1 |
Устройство для получения энергии фазового перехода вода-лед | 2019 |
|
RU2769853C2 |
Изобретение относится к солнечной энергетике и может быть использовано для получения воды из воздуха в условиях безводных районов в любой точке планеты, например пустынных, с использованием солнечной энергии. Установка выполнена непрерывного или периодического действия, корпус установки выполнен в виде вертикальной или наклонной теплоизолированной шахты, либо с четырьмя стенками, либо частично открытый с теневой северной стороны, окно ввода воздуха расположено в верхней части, а вывода воздуха - в нижней части шахты, испаритель холодильной машины выполнен преимущественно многоступенчатым в виде змеевиковых труб, расположенных и на одном уровне и по высоте шахты на определенном расстоянии друг от друга, при этом входные концы труб расположены выше или ниже выходных концов для обеспечения самотечного течения хладагента, а оребрение выполнено в виде пакета гофрированных поверхностей, плотно соединенных с трубами и перпендикулярно расположенных к этим трубам и вдоль труб вертикально вниз и установленных на расстоянии друг от друга в пакете, солнечные элементы выполнены в виде солнечных коллекторов, содержащих абсорбент или теплоноситель для регенерации хладагента, при этом солнечные коллекторы могут быть соединены с генератором, выполненным в виде котла для испарения хладагента, состоящего из смеси двух жидкостей, подключенного в свою очередь к конденсатору и к змеевиковым трубам испарителя, другой вход труб которого соединен с конденсатором, а их выход - с генератором через теплообменник, при этом трубы конденсатора могут быть выполнены плоскими и изогнутыми. Изобретение должно обеспечить наиболее экономичное из известных путей получение воды из воздуха с использованием солнечной энергии. 2 з.п. ф-лы, 6 ил.
Устройство для сбора питьевой воды из воздуха | 1990 |
|
SU1751608A1 |
Компрессионная холодильная установка | 1975 |
|
SU553405A1 |
Устройство для осушения воздуха | 1979 |
|
SU840595A1 |
СПОСОБ ПРОИЗВОДСТВА ВОДЫ ИЗ ВОЗДУХА (ОСУШЕНИЯ ВОЗДУХА) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2151973C1 |
Авторы
Даты
2003-03-10—Публикация
2001-12-24—Подача