УСТРОЙСТВО ДЛЯ ЭФФЕКТИВНОГО ПОЛУЧЕНИЯ ПРЕСНОЙ ВОДЫ ПУТЕМ КОНДЕНСАЦИИ ВОДЯНЫХ ПАРОВ ИЗ ВОЗДУХА Российский патент 2001 года по МПК B01D5/00 E03B3/28 

Описание патента на изобретение RU2169032C1

Изобретение относится к устройствам для получения пресной воды путем конденсации водяных паров из воздуха и может быть использовано в засушливых районах (пустынях, полупустынях, сухих степях) для обеспечения населения питьевой водой и водой для бытовых нужд. Оно может быть также использовано там, где пресная вода в реках и озерах сильно загрязнена вредными веществами (промышленными отходами, гербицидами и т.п.) и потому не пригодна для питья.

Известно устройство [1] для получения пресной воды из воздуха. Это устройство состоит из теплоизолированной камеры, внутри которой пространство разделено на несколько (n+1) секций, через которые поочередно проходит воздух засасываемый вентилятором из окружающей среды. В центральной секции происходит конденсация водяных паров из воздуха в жидкую воду, которая выпускается наружу. Каждая секция (n/2 секций) до секции конденсации имеет холодильный элемент в виде трубки, по которой протекает жидкий хладагент, охлажденный компрессионной холодильной машиной или полупроводниковый холодильный элемент, работающий на эффекте Пельтье. Кроме того, в этих секциях имеются теплопередающие элементы, по которым прокачивается жидкий теплоноситель в виде воды, соленой воды, этилового спирта или смеси спирта с водой. В секциях, расположенных после секции конденсации (n/2 секций) также имеются такие же теплопередающие элементы, гидравлически связанные с теплопередающими элементами в симметрично расположенных секциях до секции конденсации. Для каждой пары секций необходим насос, прокачивающий теплоноситель по направлению от выхода воздуха из устройства к его входу в него.

Работа этого устройства [1] происходит следующим образом.

Воздух, засосанный вентилятором из окружающей среды, поочередно проходит через секции, расположенные до центральной секции, и его температура в каждой секции ступенчато понижается пока в центральной секции не происходит конденсация воды в виде жидкости, которая выпускается наружу. Холодный обезвоженный воздух, попадая после конденсации поочередно в секции за центральной секцией, понижает температуру теплоносителя, протекающего в соответствующих теплопередающих элементах. Далее этот охлажденный теплоноситель попадает в теплопередающие элементы, расположенные в секциях до секции конденсации, и помогает охлаждать в них засасываемый из окружающей среды воздух, делая систему охлаждения более эффективной и потому потребляющей меньше электроэнергии.

Для повышения эффективности рассмотренного устройства, также предусмотрено охлаждение обезвоженным воздухом, выходящим из устройства, горячих труб конденсатора компрессионной холодильной машины или горячих спаев элементов Пельтье.

Недостатком устройства [1] является его сложность. Дополнительный недостаток этого устройства в том, что его нельзя эффективно использовать в безводных районах, для чего это устройство в первую очередь предназначено, так как в безводных районах мала абсолютная и относительная влажность воздуха, и получать воду путем конденсации непосредственно в жидком виде невозможно [2].

Наиболее близким по технической сущности и достигаемому результату является устройство [2] , принятое за прототип. Это устройство состоит из теплоизолированной холодильной камеры с патрубком для засасывания воздуха из окружающей среды и патрубком для выпуска воздуха в окружающую среду через засасывающий насос. Внутри камеры расположены холодильные элементы. Эти элементы могут быть выполнены в виде системы труб, подключенных к специальной компрессионной холодильной машине, в которых циркулирует жидкий или газообразный хладагент. Холодильные элементы могут быть также выполнены из полупроводниковых материалов и работать на основе эффекта Пельтье. Внутри камеры расположены электрические нагреватели. Для выпуска полученной воды камера снабжена патрубком с краном.

Работает устройство-прототип [2] следующим образом. Насос засасывает воздух из окружающей среды, который в камере охлаждается, и пары воды конденсируются. Если влажность воздуха высокая, то конденсация воды может производиться в жидком состоянии при охлаждении воздуха на 10-20oC до 1-20oC. В районах пустынь и полупустынь с малой влажностью воздух охлаждают до -30oC, и вода конденсируется в виде льда и инея, которые периодически расплавляют и полученную воду выпускают наружу. Обезвоженный воздух из холодильной камеры можно выпускать в окружающую среду, но экономически выгодно его использовать для кондиционирования воздуха в помещениях или для работы подключенных к устройству холодильников и морозильников.

Недостатком устройства-прототипа [2] является большой расход электроэнергии на единицу массы полученной воды, так как большая часть электроэнергии расходуется на охлаждение засосанного в устройство воздуха.

Цель настоящего изобретения повысить эффективность устройства [2] путем уменьшения расхода электроэнергии на охлаждение воздуха, засасываемого из окружающей среды.

Это достигается благодаря тому, что устройство для эффективного получения пресной воды путем конденсации водяных паров из воздуха, содержащее теплоизолированную холодильную камеру с теплообменными трубами, внутри которых протекает жидкий хладагент, охлажденный компрессионной холодильной машиной (в виде теплового насоса) способное охлаждать воздух до точки росы 1-20oC и ниже до -30oC, насос или вентилятор для засасывания воздуха из окружающей среды в холодильную камеру, патрубки, присоединенные к камере для засасывания воздуха, трубу для выпуска из камеры охлажденного и обезвоженного воздуха, электрические нагреватели, расположенные внутри холодильной камеры для расплавления льда, если вода конденсируется из воздуха в виде льда или инея, патрубок с краном в нижней части холодильной камеры для выпуска полученной воды, отличается тем, что патрубки для засасывания воздуха из окружающей среды расположены в теплоизолированном теплообменнике, вплотную присоединенном к холодильной камере, и выполнены в виде оребренных, гофрированных металлических труб или труб с укрепленными на них металлическими теплопоглодителями с большой поверхностью теплопередачи, охлаждаемых холодным обезвоженным воздухом, поступающим из холодильной камеры по теплоизолированной трубе и выходящим через другую трубу с противоположной стороны теплообменника во второй дополнительный теплообменник, с патрубком для выпуска обезвоженного воздуха в окружающую среду; при этом во втором теплообменнике расположены горячие трубы конденсатора компрессионной холодильной машины, а для регулировки мощности потока воздуха, в обоих теплообменниках, на теплоизолированной трубе выполнен патрубок с краном для выпуска из нее части холодного обезвоженного воздуха в окружающую среду: кран может быть закрыт, открыт частично или полностью открыт.

Устройство отличаются тем, что в холодильной камере вместо труб с жидким хладагентом расположены полупроводниковые холодильные элементы, работающие на эффекте Пельтье, горячие спаи которых расположены во втором дополнительном теплообменнике.

Сущность изобретения состоит в том, что выходящий из холодильной камеры холодный и обезвоженный воздух первоначально используют для охлаждения, засасываемого из окружающей среды воздуха, направляя этот холодный воздух в теплообменник, в котором расположены патрубки для засасывания воздуха, а затем во второй дополнительный теплообменник, в котором располагаются горячие трубы конденсатора компрессионной холодильной машины или горячие спаи полупроводниковых элементов Пельтье, что уменьшает расход электроэнергии на охлаждение воздуха и повышает эффективность работы холодильной системы в целом.

Схема предлагаемого устройства в продольном разрезе изображена на чертеже.

Устройство состоит из холодильной камеры 1, внутри которой расположены металлические оребренные, гофрированые трубы 2 или трубы с насаженными на них металлическими теплопоглотителями с большой поверхностью теплопередачи. Вместо труб 2 в камере 1 могут быть установлены охлаждающие полупроводниковые элементы Пельтье. Вплотную к холодильной камере 1 присоединен теплообменник 3 с расположенными внутри него патрубками 4 для засасывания воздуха из окружающей среды и подачи его в камеру 1. Эти патрубки 4 выполнены подобно трубам 2 и имеют большую поверхность теплопередачи. Для засасывания воздуха из окружающей среды на камере 1 установлен насос 5, или вентилятор, который присоединен к теплоизолированной трубе 6, предназначенной для подачи холодного и обезвоженного воздуха в теплообменник 3. Для выпуска воздуха из теплообменника 3 выполнен патрубок 7, присоединенный ко второму дополнительному теплообменнику 8, в котором расположены горячие трубы конденсатора компрессионной холодильной машины или горячие спаи полупроводниковых элементов Пельтье. Для выпуска обезвоженного воздуха из второго дополнительного теплообменника 8 в окружающую среду служит патрубок 9.

Для регулировки мощности потока холодного и обезвоженного воздуха на трубе 6 выполнен патрубок с краном 10, через который часть холодного воздуха можно выпускать в окружающую среду. Этот кран может быть открыт полностью, открыт частично или закрыт.

Для выпуска полученной воды наружу установлен патрубок с краном 11. Если конденсация воды происходит в виде льда или инея, для их расплавления внутри камеры устанавливают периодически включаемые электрические нагреватели 12. Для более равномерного распределения потока охлаждаемого воздуха внутри камеры 1 дополнительно может быть установлена перегородка 13 с отверстиями 14 для выхода воздуха.

Работа устройства происходит следующим образом.

Включается компрессионная холодильная машина или включается постоянный ток в охлаждающие полупроводниковые элементы Пельтье. Далее включают насос или вентилятор 5. Воздух из окружающей среды засасывается по патрубкам 4 и попадает в холодильную камеру 1 и, проходя между трубами 2 с протекающим в них хладагентом, или между подобным же образом расположенными элементами Пельтье, охлаждается, в результате чего происходит конденсация водяных паров из воздуха.

Если абсолютная и относительная влажность воздуха велика, то охлаждение воздуха производят до температуры 1-20oC и вода конденсируется в жидком состоянии. Если получение воды производят в пустыне, где абсолютная и относительная влажности очень малы, то охлаждение воздуха ведут до температуры -25, -30oC, и вода конденсируется в виде льда или инея, оседая на охлаждающих трубах 4 (или элементах Пельтье) и на стенках холодильной камеры 1. Далее холодный и обезвоженный воздух выходит из камеры 1 через отверстия 14 в перегородке 13 и насосом 5 закачивается в теплоизолированную трубу 6, по которой этот воздух поступает в теплообменник 3, где проходя между патрубками 4, охлаждает воздух, засасываемый из окружающей среды. Это значительно уменьшает расход электроэнергии на охлаждение воздуха в камере 1. Выходя из теплообменника 3, воздух по патрубку 7 попадает во второй дополнительный теплообменник 8, в котором расположены горячие трубы конденсатора компрессионной холодильной машины или горячие спаи элементов Пельтье. Охлаждая их он значительно повышает эффективность работы системы охлаждения, что также приводит к дополнительному уменьшению расхода электроэнергии. В результате на единицу массы получаемой воды расход электроэнергии оказывается небольшим и значительно меньшим, чем в устройстве-прототипе [2].

Из теплообменника 8 по трубе 9 воздух выходит в окружающую среду. Так как в теплообменниках 3 и 8 обезвоженный воздух получает большое количество тепла, то его температура при выходе из трубы 9 может быть близка к температуре воздуха окружающей среды и не будет существенно нарушать температуру воздуха в окружающем пространстве.

Интенсивность охлаждения в теплообменниках 3 и 8 регулируют мощностью потока холодного и обезвоженного воздуха, поступающего в них по трубе 6. Мощность этого потока регулируют краном с патрубком 10, выполненным на трубе 6, выпуская через него в окружающую среду большую или меньшую часть холодного воздуха или не выпуская его совсем.

Если вода в камере 1 конденсируется в жидком состоянии, то ее периодически выпускают наружу через патрубок с краном 11. Если вода конденсируется в виде льда и инея, то после их накопления систему охлаждения и насос 5 выключают, включают электрические нагреватели 12, расплавляют лед и иней и полученную воду выпускают открывая кран 11. Далее кран 11 закрывают и запускают устройство снова, как описано выше.

Предложенное устройство позволяет с малым расходом электроэнергии получать пресную питьевую воду в любом месте и в том числе в безводных районах и самых сухих пустынях (например, в Африке, в частности в Сахаре), делая реальным их быстрое освоение. Это устройство может быть успешно использовано в Средней Азии, Казахстане, Крыму, в Донбассе, устраняя дефицит пресной воды. Оно может быть также использовано там, где природные источники питьевой воды сильно загрязнены промышленными отходами, гербицидами, боевыми отравляющими веществами или радиоактивными изотопами после атомного взрыва. Оно может быть также использовано в районах стихийных бедствий или охваченных войной, где система водоснабжения разрушена. Устройство полезно и на морских судах, где воздух окружающей среды наполнен парами воды, а запасы пресной воды на судах всегда ограничены.

Предлагаемое изобретение может быть выполнено в виде устройства для одной семьи и может снабжать пресной водой отдельную квартиру или загородный дом. Оно может также снабжать водой поселок. Устройство может быть установлено на автомобиле и быть передвижным, что позволяет в экстренных ситуациях (например, после землетрясения) быстро организовать водоснабжение.

Экономический эффект от использования изобретения будет велик, но количественно его в настоящее время оценить трудно.

Литература
1. Романовский В.Ф., Романовский А.В. Способ извлечения воды из воздуха и устройство для его осуществления. Патент РФ N 2081256, кл.6 E 03 В 3/28, 1996 г.

2. Цивинский С. В. Устройство для получения пресной воды путем конденсации водяных паров из воздуха. Патент РФ N 2045978, кл.6 В 01 D 5/00, 1991 г.

Похожие патенты RU2169032C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ МАССОВОГО ПОЛУЧЕНИЯ ПРЕСНОЙ ВОДЫ ПУТЕМ КОНДЕНСАЦИИ ВОДЯНЫХ ПАРОВ ИЗ ВОЗДУХА 1998
  • Цивинский С.В.
RU2143033C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ПРЕСНОЙ ВОДЫ ПУТЕМ КОНДЕНСАЦИИ ВОДЯНЫХ ПАРОВ ИЗ ВОЗДУХА 1991
  • Цивинский Станислав Викторович
RU2045978C1
КОЛОДЕЦ ДЛЯ ПОЛУЧЕНИЯ ВОДЫ ИЗ АТМОСФЕРНОГО ВОЗДУХА 2018
  • Голубенко Михаил Иванович
RU2675473C1
УСТРОЙСТВО ДЛЯ ОТОПЛЕНИЯ ИНДИВИДУАЛЬНЫХ ЗДАНИЙ И СПОСОБ ЕГО РАБОТЫ 2004
  • Цивинский Станислав Викторович
RU2280816C2
УСТРОЙСТВО ДЛЯ ИЗВЛЕЧЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ИЗ ВОЗДУХА ОКРУЖАЮЩЕЙ СРЕДЫ С ЦЕЛЬЮ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ И ПРЕСНОЙ ВОДЫ 2002
  • Цивинский С.В.
RU2219370C1
Газожидкостная установка для генерирования водовоздушной и твердеющей полимерной пены с адаптивной системой управления физическими параметрами пенного маскировочного покрытия 2016
  • Герасименя Валерий Павлович
  • Баранов Андрей Александрович
  • Комаровский Николай Михайлович
  • Селезнев Владимир Ильич
RU2708341C2
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ ИЗ ТЕПЛА ВОЗДУХА ОКРУЖАЮЩЕЙ СРЕДЫ 2000
  • Цивинский С.В.
RU2160850C1
Устройство для получения воды из атмосферного воздуха и выработки электроэнергии 2022
  • Ковылков Константин Викторович
  • Ахмедов Аскар Джангир Оглы
  • Сиуков Сергей Сергеевич
  • Пустовалов Евгений Васильевич
  • Денисова Мария Алексеевна
RU2795063C1
СПОСОБ РАБОТЫ ГАЗОТУРБИННОЙ ЭЛЕКТРОСТАНЦИИ НА ТВЕРДОМ ИЛИ ЖИДКОМ ТОПЛИВЕ 2003
  • Цивинский С.В.
RU2245445C2
АТОМНО-ЭНЕРГЕТИЧЕСКИЙ КОМПЛЕКС 2012
  • Рогожкин Владимир Владимирович
  • Мошков Кирилл Владимирович
  • Вализер Николай Александрович
  • Потапов Кирилл Анатольевич
RU2504417C1

Реферат патента 2001 года УСТРОЙСТВО ДЛЯ ЭФФЕКТИВНОГО ПОЛУЧЕНИЯ ПРЕСНОЙ ВОДЫ ПУТЕМ КОНДЕНСАЦИИ ВОДЯНЫХ ПАРОВ ИЗ ВОЗДУХА

Устройство позволяет получать пресную питьевую воду везде, где это необходимо: в пустыне, на корабле, загородном доме и в районах стихийных бедствий или охваченных войной, где разрушена система водоснабжения. Устройство представляет собой холодильную камеру, внутри которой расположены охлаждающие элементы в виде металлических труб, по которым течет жидкий хладагент, охлажденный компрессионной холодильной машиной, или полупроводниковые элементы Пельтье. Воздух по патрубкам, расположенным в теплообменнике, засасывается в холодильную камеру, где охлаждается, и водяные пары, содержащиеся в воздухе, конденсируются в виде жидкой воды или оседают в виде льда и инея. Холодный и обезвоженный воздух по теплоизолированной трубе тем же насосом подается в теплообменник, омывает патрубки, по которым засасывается воздух, и охлаждает засасываемый воздух, значительно уменьшая расход электроэнергии на его охлаждение в холодильной камере. Затем холодный воздух поступает во второй дополнительный теплообменник, где охлаждает расположенные в нем горячие трубы конденсатора компрессионной холодильной машины или горячие спаи полупроводниковых элементов Пельтье, значительно повышая эффективность работы компрессионной машины и элементов Пельтье, что также приводит к уменьшению расхода электроэнергии. В результате на единицу массы полученной воды расход электроэнергии оказывается значительно меньшим. 1 ил.

Формула изобретения RU 2 169 032 C1

Устройство для эффективного получения пресной воды путем конденсации водяных паров из воздуха, содержащее теплоизолированную холодильную камеру с полупроводниковыми холодильными элементами, работающими на эффекте Пельтье, или с теплообменными трубами, внутри которых протекает жидкий хладагент, охлажденный компрессионной холодильной машиной, способной охлаждать воздух до точки росы 1 - 20oC и ниже до -30oC, насос или вентилятор для засасывания в холодильную камеру воздуха из окружающей среды, патрубки, присоединенные к камере для засасывания воздуха, трубу выпуска из холодильной камеры охлажденного и обезвоженного воздуха, электрические нагреватели, расположенные внутри холодильной камеры для расплавления льда, если вода конденсируется из воздуха в виде льда или инея, патрубок с краном в нижней части холодильной камеры для выпуска полученной воды, отличающееся тем, что патрубки для засасывания воздуха из окружающей среды расположены в теплоизолированном теплообменнике, вплотную присоединенном к холодильной камере, и выполнены в виде оребренных, гофрированных металлических труб или труб с укрепленными на них металлическими теплопоглотителями с большой поверхностью теплопередачи, охлаждаемых холодным обезвоженным воздухом, поступающим из холодильной камеры по теплоизолированной трубе и выходящим через другую трубу с противоположной стороны во второй дополнительный теплообменник с патрубком для выпуска обезвоженного воздуха в окружающую среду, при этом во втором теплообменнике расположены горячие трубы конденсатора компрессионной холодильной машины или горячие спаи холодильных элементов, работающих на эффекте Пельтье, а для регулировки мощности потока воздуха в обоих теплообменниках на теплоизолированной трубе выполнен патрубок с краном для выпуска из нее части холодного и обезвоженного воздуха в окружающую среду.

Документы, цитированные в отчете о поиске Патент 2001 года RU2169032C1

СПОСОБ ПОЛУЧЕНИЯ ЦЕЛЛЮЛОЗЫ 1993
  • Захаров Валентин Иванович
  • Богдан Василий Макарович
  • Шалимова Тамара Викторовна
  • Лазарева Милица Александровна
  • Белодубровский Роман Борисович
RU2045597C1
Прибор для очистки паром от сажи дымогарных трубок в паровозных котлах 1913
  • Евстафьев Ф.Ф.
SU95A1
RU 2000393 С1, 07.09.1993
СПОСОБ УСТАНОВКИ СТЕРЖНЯ С КОРОТКОЙ ОПРАВКОЙ СТАНА ПОПЕРЕЧНО-ВИНТОВОЙ ПРОКАТКИ 2006
  • Тартаковский Игорь Константинович
  • Тартаковский Борис Игоревич
  • Бедняков Владимир Владимирович
  • Финкельберг Дмитрий Давидович
  • Артемьев Юрий Сергеевич
  • Бородин Виктор Григорьевич
RU2341342C2
SU 1484886 А1, 07.06.1989
СПОСОБ ГИДРОКСИКАРБОНИЛИРОВАНИЯ ЛАКТОНОВ 1994
  • Филипп Дени
  • Карл Патуа
  • Робер Перрон
RU2117656C1

RU 2 169 032 C1

Авторы

Цивинский С.В.

Даты

2001-06-20Публикация

1999-11-09Подача