СПОСОБ ОПРЕДЕЛЕНИЯ ЖИЗНЕСПОСОБНОСТИ КИШКИ И ОПТИМАЛЬНЫХ ГРАНИЦ РЕЗЕКЦИИ ПРИ СТРАНГУЛЯЦИОННОЙ КИШЕЧНОЙ НЕПРОХОДИМОСТИ Российский патент 2003 года по МПК A61B8/06 

Описание патента на изобретение RU2200472C2

Изобретение относится к медицине, в частности к хирургии, и может быть использовано для диагностики жизнеспособности кишки при ее странгуляционном сдавлении и определения объема резекции.

Известны следующие способы определения жизнеспособности кишки: наличие пульсации сосудов брыжейки, перистальтики кишки, оценка температуры, цвета серозного покрова, введение в сосудистое русло кишки красителей. Известны также методики запланированной релапаротомии через 10-12 ч, во время которой изменения в кишке оценивают с большей достоверностью. С этой же целью используют лапароскопию.

Однако многочисленные наблюдения свидетельствуют о том, что внешние признаки относительного благополучия зачастую сочетаются с обширным некрозом слизистой оболочки. В этих условиях ошибочное мнение хирурга приводит к выбору неверной тактики операции с последующими тяжелыми последствиями для больного [1].

Основной вопрос, который хирург решает во время операции - это определение жизнеспособности кишечной стенки и установление границ резекции кишки в том случае, если кишка признана нежизнеспособной. Последний момент является принципиальным, так как резекция кишки в пределах нежизнеспособных тканей может привести к несостоятельности кишечного анастомоза, с другой стороны, избыточный объем резекции приводит к повышению травматичности операции, что особенно важно, когда странгуляции подвергается значительная часть кишки. Даже небольшие изменения в состоянии микроваскулярного ложа кишечной стенки могут стать причиной несостоятельности анастомоза. Степень микроциркуляторных нарушений и их протяженность зависят от отдела кишечника, длительности ущемления, общего состояния больного. Рекомендуемые большинством авторов границы резекции в пределах 30-40 см проксимальнее и 15-20 см дистальнее некроза часто являются необоснованными и могут вызывать определенные трудности при субтотальной резекции, вблизи илеоцекального угла, у ослабленных и пожилых больных [4] . В этих случаях необходима объективная оценка микроциркуляции кишечной стенки, которая позволит определить как степень жизнеспособности кишки, так и оптимальные границы резекции.

Прототипом предлагаемого способа определения жизнеспособности кишки является метод трансиллюминационной тензометрии, предложенный в 1971 г. З.М. Сигалом и модифицированный в 1982 г. И.А. Ерюхиным. Суть метода заключается в определении давления в интрамуральных сосудах кишки путем визуального наблюдения кровотока в проходящем свете при дозированном сдавлении кишечной стенки между браншами аппарата, снабженными прозрачными пластинками. Исследуемый участок кишки помещают противобрыжеечным его краем между прижимающей браншей со стеклом и цилиндром с мембраной, в который нагнетается под давлением воздух. С помощью стекла с браншей, помещенного на стенку кишки до плотного соприкосновения и подсветки, под контролем глаза определяют степень кровенаполнения сосудов кишечной стенки. Регистрацию видимой пульсации сосудов кишки осуществляют за счет увеличения давления воздуха в цилиндре, который с помощью натягивающейся сверху мембраны прижимает кишку к стеклу, и кровь вытесняется из венозных и артериальных капилляров кишечной стенки. По мере снижения давления сосуды начинают медленно наполняться кровью, и визальная регистрация первой пульсовой волны соответствует систолическому давлению, а прекращение видимой пульсации - диастолическому [3].

Однако трансиллюминационная тензометрия имеет целый ряд недостатков, которые связаны с наличием определенной доли субъективизма в оценке видимого пульсового давления, отсутствием возможности четкой регистрации параметров микроциркуляции, громоздкостью приспособления и трудностью в установлении и настройки аппарата, что делает невозможным применение метода в случае, если кишка фиксирована в глубине брюшной полости.

Целью предлагаемого изобретения является поиск способа определения жизнеспособности кишки при ее странгуляционном ущемлении и выбора оптимальных границ резекции, основанного на объективной регистрации изменений микроциркуляции в стенке кишки и отличающегося высокой точностью, информативностью, простотой и быстротой технического решения.

Поставленную цель осуществляют за счет того, что для исследования микроциркуляции применяют лазерную доплеровскую флоуметрию, по результатам которой кишку признают жизнеспособной в том случае, если после устранения причины странгуляции и проведения реабилитационных мероприятий перфузия кишечной стенки составляет 30 мл/мин/100 г ткани и выше для тонкой кишки и 20 мл/мин/100 г ткани - для толстой кишки; при показателях ниже 30 мл/мин/100 г ткани для тонкой и ниже 15 мл/мин/100 г ткани - для толстой кишки проводят резекцию, которую осуществляют проксимальнее и дистальнее некротизированного участка, в зонах с нормальными показателями микроциркуляции для данного отдела кишечника, которые, в среднем, на приводящей петле регистрировались в 10±3,4 см, а на отводящей петле - в 5,1±2,1 см от места странгуляции.

Принципиальным в предлагаемом способе является применение метода лазерной доплеровской флоуметрии (ЛДФ). Метод основан на изменении доплеровской компоненты в спектре отраженного лазерного сигнала, рассеянного на движущихся в тканях частицах, в основном эритроцитах [8]. Монохроматичный пучок света малой интенсивности, излученный диодом, встроенным в лазерный доплеровский флоуметр, проходит по гибкому световоду и через наконечник датчика освещает исследуемую ткань. В ткани свет рассеивается отражающими частицами и по приемному световоду попадает на внутренний фотоприемник лазерного доплеровского флоуметра. Это дает возможность проводить измерения величины перфузии тканей кровью, т.е. потока эритроцитов в единицу времени через единицу объема ткани. Модель миграции фотона в ткани и столкновение его с отдельными эритроцитами детально разработана Боннером. Отраженный от статических компонентов ткани, световой сигнал не изменяет своей частоты, а отраженный от подвижных частиц - имеет доплеровское смещение относительно зондирующего сигнала. Регистрируемая с помощью фотодетектора мощность спектра доплеровской компоненты отраженного сигнала определяется концентрацией в заданном объеме ткани эритроцитов и их скоростью [9].

Регистрируемый при ЛДФ сигнал количественно характеризует кровоток в микрососудах с временным разрешением 100 мс (мгновенная величина потока) и пространственным разрешением 1 мм2 (т.е. измерение осуществляется в 1-1,5 мм3 ткани). Это означает, что ЛДФ дает интегральную информацию, усредняемую по очень большому количеству эритроцитов, одномоментно находящихся в измеряемом объеме ткани.

В наших исследованиях мы применяли одноканальный лазерный доплеровский флоуметр BLF 21 американской фирмы Transonic systems Inc. В качестве источника лазерного излучения в приборе использован инфракрасный лазер класса А; выходная оптическая мощность менее 2 мВт, длина волны 780 нм, мощность на наконечнике датчика менее 2 мВт. Площадь измерения примерно 1 мм3 при 1 мм в глубину ткани для датчиков с расстоянием между передатчиком и приемником 0,5 мм. Диапазон доплеровских сигналов от 24 Гц до 24 кГц [5].

Прибор позволяет проводить измерения в реальном масштабе времени. В зависимости от задач исследования результаты выдаются в аналоговом виде на самописец, на цифровой дисплей и через интерфейс на IBM-совместимый компьютер. В комплекте с аппаратом поставляется пакет программ FLOW TRACE Software, WinDaq 100, и WinDaq Playbak, которые позволяют просматривать данные потока крови на экране компьютера и обрабатывать их.

Лазерная доплеровская флоуметрия для определения микроциркуляции применяется уже относительно давно, и за это время зарекомендовала себя как высокоинформативный и точный метод, который широко используется для определения ранней диагностики диабетических микроангиопатий, для определения степени ишемии нижних конечностей и других заболеваний, где ведущая роль в патогенезе принадлежит нарушениям микроциркуляторного кровотока.

Проведенные исследования состояли из 2 серий. В первой серии изучали величину кровотока неизмененной кишечной стенки. Исследования проводились интраоперационно у больных, которые оперированы по поводу хирургических заболеваний брюшной полости, не связанных с патологией кишечника. Всего обследовано 30 пациентов. Доплерометрию производили с помощью поверхностного датчика типа S, который подводили к противобрыжеечному краю кишки до соприкосновения, избегая сдавления стенки кишки, поскольку кровоток в микроциркуляторном русле отличается высокой лабильностью [2]. Датчик удерживали в таком состоянии в течение 2-3 мин, до момента стабилизации показателей на табло прибора. Допустимые отклонения составили 5 мл/мин/100 г ткани в ту и другую сторону. Нами установлено, что значения микроциркуляции в различных отделах кишечника колеблются в достаточно широких пределах. Это зависит от отдела кишки, стадии функциональной активности, ангиоархитектоники в месте измерения. Установлено, что для двенадцатиперстной кишки характерны наиболее высокие цифры микрокровотока - 60,4±10,1 мл/мин/100 г ткани, тощей кишки - 51±5,8 мл/мин/100 г ткани, подвздошной - 43,7±8,9 мл/мин/100 г ткани, толстой кишки - 38,1±6,3 мл/мин/100 г ткани.

Во второй серии исследовали кровоток у пациентов, оперированных по поводу странгуляционной кишечной непроходимости. В группу вошли 26 больных. Причиной странгуляции в 10 случаях были ущемленные грыжи различной локализации, в 12 случаях - спаечная болезнь брюшной полости, в 2 случаях - узлообразование, в 2 - случаях заворот сигмовидной кишки. После выполнения лапаротомии либо герниотомии производили осмотр кишечника, выявляли участки, находящиеся в состоянии острой ишемии. Далее выполняли первичное доплерометрическое исследование пораженных участков, до ликвидации препятствия кровотоку, и участков, не подвергшихся странгуляции. Методика измерений была аналогична предыдущей группе. После рассечения спаек или ущемляющего кольца производили повторную визуальную и доплерометрическую оценку капиллярного кровотока стенки кишки. В случаях отсутствия ишемического повреждения кишки исследования заканчивали.

При наличии сомнений в жизнеспособности органа определяли степень и протяженность микроциркуляторных нарушений в ущемленной кишке, проводили мероприятия по реабилитации кишки, включающие введение 0,25% раствора новокаина в брыжейку кишки, согревание ее, после чего еще раз производили лазерную доплеровскую флоуметрию [6]. При нормализации капиллярного кровотока после проведения реабилитационных мероприятий, особенно при появлении реактивной гиперемии, орган оценивали как жизнеспособный. При сохранении кровотока на прежнем критическом уровне (10-20 мл/мин/100 г ткани) либо повышении его менее, чем на 50% от нормальной величины, орган признавали как нежизнеспособный. Установлено, что в случае критического снижения микрокровотока все последующие реанимационные мероприятия не приводили к восстановлению микроциркуляции [7].

Уровень резекции при наличии нежизнеспособной петли кишки определяли следующим образом. Дистальнее и проксимальнее от места некроза кишки последовательно в точках через каждые 1-2 см методом лазерной доплеровской флоуметрии исследовали кишечный кровоток. Приближение регистрируемых показателей к норме служило ориентиром для определения границ резекции кишки. Необходимо отметить, что применение метода лазерной доплеровской флоуметрии позволило уменьшить объем резекции. В среднем, на приводящей петле регистрировались нормальные значения кровотока на 10±3,1 см от места странгуляции, на отводящей петле - 5,1±1,2 см от места странгуляции.

Таким образом, метод лазерной доплеровской флоуметрии является объективным, точным и технически простым способом определения жизнеспособности кишки при странгуляционной кишечной непроходимости, надежен и удобен в определении оптимальных границ выполняемой резекции и может служить четким прогностическим признаком некроза кишки.

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА
1. Астапенко В.Г., Максимов С.С. Ошибки и осложнения в хирургии "острого живота". - Минск: Высш. шк., 1982. - 189 с.

2. Бровкин В.А., Азарян О.Б., Калашников А.С. Лазерная доплеровская флоуметрия в оценке жизнеспособности кишки при острой ишемии. - М.: Материалы первого всероссийского симпозиума "Применение лазерной доплеровской флоуметрии в медицинской практике", 1996. - С.107.

3. Ерюхин И. А. , Петров В.П., Ханевич М.Д. Кишечная непроходимость. - СПб., 1999. - 443 с.

4. Кочнев О.С. Экстренная хирургия желудочно-кишечного тракта. - Казань: Изд-во Казан. ун-та, 1984. - 288 с.

5. Медведев О. С., Мурашов А.Н., Дугин С.Ф. Об испытаниях усовершенствованного лазерного измерителя кровотока типа BLF 21, производимого фирмой Transonic Systems Inc.: Отчет. - М., 1994. - 2 с.

6. Сигал М.З., Розенгартен М.Ю. Тактика хирурга при острой кишечной непроходимости. - Казань: Изд-во Казан. ун-та, 1976. - 269 с.

7. Симич П. Хирургия кишечника. - Бухарест: Мед. изд-во, 1979. - 399 с.

8. Laser Doppler / Gianni V. Belcaro, U. Hoffmann, A. Bollinger et al. - Stockholm: Med Orion, 1994. - 293 p.

9. Shepherd A. P., Riedel G.L. Laser-Doppler blood flowmetry of intestinal mucosal hyperemia induced by glucose and bile // Amer. J. of Physiology. - 1985. - V.248. - P.393-397.

Похожие патенты RU2200472C2

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ЖИЗНЕСПОСОБНОСТИ КИШКИ И ОПТИМАЛЬНЫХ ГРАНИЦ РЕЗЕКЦИИ ПРИ СТРАНГУЛЯЦИОННОЙ КИШЕЧНОЙ НЕПРОХОДИМОСТИ ВО ВРЕМЯ ХИРУРГИЧЕСКОЙ ОПЕРАЦИИ 2017
  • Сигачев Павел Владимирович
  • Толстокоров Александр Сергеевич
  • Капралов Сергей Владимирович
  • Семячкина-Глушковская Оксана Валерьевна
RU2680915C1
СПОСОБ ИЗМЕРЕНИЯ МИКРОЦИРКУЛЯЦИИ ТОНКОЙ КИШКИ В ПРЕД- И/ИЛИ ПОСЛЕОПЕРАЦИОННОМ ПЕРИОДЕ 2008
  • Дибиров Магомедбег Дибирмагомедович
  • Родионов Игорь Евгеньевич
  • Акопян Венера Суреновна
  • Исаев Али Исаевич
  • Какубава Максим Рюрикович
RU2392849C1
Способ определения зоны локального некроза и уровня резекции кишки при кишечной непроходимости у детей 2017
  • Бабич Игорь Иванович
  • Мельников Юрий Николаевич
RU2690744C1
Способ интраоперационного определения границ резекции кишечника при его перфорации 2016
  • Хитарьян Александр Георгиевич
  • Алибеков Альберт Заурбекович
  • Сайдуллаев Халид Махамадович
  • Глумов Евгений Эдуардович
  • Зайцев Павел Павлович
  • Болоцков Александр Сергеевич
RU2634298C1
СПОСОБ ДИАГНОСТИКИ НАРУШЕНИЯ МИКРОЦИРКУЛЯЦИИ ТОНКОЙ КИШКИ У ПАЦИЕНТОВ С РАЗЛИТЫМ ПЕРИТОНИТОМ 2011
  • Косовских Андрей Александрович
  • Чурляев Юрий Алексеевич
  • Кан Сергей Людовикович
  • Баранов Андрей Игоревич
  • Токмакова Татьяна Олеговна
RU2457778C1
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ФОРМЫ ОСТРОЙ ТОНКОКИШЕЧНОЙ НЕПРОХОДИМОСТИ 2000
  • Панцырев Ю.М.
  • Мишукова Л.Б.
  • Бабкова И.В.
  • Ларичев С.Е.
RU2176480C1
СПОСОБ МОДЕЛИРОВАНИЯ ОСТРОЙ КИШЕЧНОЙ НЕПРОХОДИМОСТИ 2009
  • Леонов Сергей Дмитриевич
  • Родин Антон Викторович
RU2422913C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЖИЗНЕСПОСОБНОСТИ ТКАНИ КИШКИ ПРИ СТРАНГУЛЯЦИОННОЙ КИШЕЧНОЙ НЕПРОХОДИМОСТИ 2009
  • Баньков Валерий Иванович
  • Копылова Юлия Ивановна
  • Лисиенко Валентина Михайловна
RU2421144C1
Способ диагностики жизнеспособности тонкой кишки при странгуляционной кишечной непроходимости 1988
  • Сигал Золтан Мойшевич
  • Плетнев Петр Андреевич
SU1641264A1
СПОСОБ ОПРЕДЕЛЕНИЯ ЖИЗНЕСПОСОБНОСТИ КИШЕЧНИКА ПРИ ОСТРОЙ КИШЕЧНОЙ НЕПРОХОДИМОСТИ В ЭКСПЕРИМЕНТЕ 2010
  • Плешков Владимир Григорьевич
  • Леонов Сергей Дмитриевич
  • Родин Антон Викторович
RU2438571C1

Реферат патента 2003 года СПОСОБ ОПРЕДЕЛЕНИЯ ЖИЗНЕСПОСОБНОСТИ КИШКИ И ОПТИМАЛЬНЫХ ГРАНИЦ РЕЗЕКЦИИ ПРИ СТРАНГУЛЯЦИОННОЙ КИШЕЧНОЙ НЕПРОХОДИМОСТИ

Изобретение может быть использовано в медицине, в частности в хирургии. Лазерной доплеровской флоуметрией исследуют микроциркуляцию кишки. Кишку признают жизнеспособной, если после устранения причины странгуляции и проведения реабилитационных мероприятий перфузия кишечной стенки составляет 30 мл/мин/100 г ткани и выше для тонкой кишки, 20 мл/мин/100 г ткани - для толстой кишки. При показателях ниже 30 мл/мин/100 г ткани для тонкой и ниже 15 мл/мин/100 г ткани для толстой кишки проводят резекцию, которую осуществляют проксимальнее и дистальнее некротизированного участка, в зонах с нормальными показателями микроциркуляции для данного отдела кишечника, которые, в среднем, на приводящей петле регистрировались в 10±3,4 см, а на отводящей петле - в 5,1±2,1 см от места странгуляции. Способ позволяет повысить точность и информативность исследования. 1 з.п.ф-лы.

Формула изобретения RU 2 200 472 C2

1. Способ определения жизнеспособности кишки и оптимальных границ резекции при странгуляционной кишечной непроходимости, включающий определение уровня интрамуральной микроциркуляции кишки, отличающийся тем, что для исследования микроциркуляции применяют лазерную доплеровскую флоуметрию, по результатам которой кишку признают жизнеспособной в том случае, если после устранения причины странгуляции и проведения реабилитационных мероприятий перфузия кишечной стенки составляет 30 мл/мин/100 г ткани и выше для тонкой кишки и 20 мл/мин/100 г ткани - для толстой кишки; при показателях ниже 30 мл/мин/100 г ткани для тонкой и ниже 15 мл/мин/100 г ткани для толстой кишки проводят резекцию. 2. Способ по п. 1, отличающийся тем, что резекцию кишки осуществляют проксимальнее и дистальнее некротизированного участка, в зонах с нормальными показателями микроциркуляции для данного отдела кишечника, которые, в среднем, на приводящей петле регистрировались в 10±3,4 см, а на отводящей петле - в 5,1±2,1 см от места странгуляции.

Документы, цитированные в отчете о поиске Патент 2003 года RU2200472C2

ЕРЮХИН И.А
и др
Кишечная непроходимость
- Спб, 1999, 443 с
СПОСОБ ОПРЕДЕЛЕНИЯ ЖИЗНЕСПОСОБНОСТИ КИШКИ 1992
  • Подкаменев В.В.
  • Мигунов В.Е.
  • Носков А.П.
  • Вертлиб В.В.
RU2043750C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ЖИЗНЕСПОСОБНОСТИ КИШКИ 1996
  • Власов А.П.
  • Маркосьян С.А.
  • Рубцов О.Ю.
  • Окунев Н.А.
  • Трофимов В.А.
RU2123696C1
СПОСОБ ПЕРЕРАБОТКИ КРАСНОГО ШЛАМА 1998
  • Линников О.Д.
  • Яценко С.П.
  • Сабирзянов Н.А.
RU2140998C1

RU 2 200 472 C2

Авторы

Винник Ю.С.

Черданцев Д.В.

Первова О.В.

Даты

2003-03-20Публикация

2000-05-03Подача