Изобретение относится к области квантовой электроники и может быть использовано в твердотельных лазерах периодического действия с внешним поджигом лампы накачки.
Недостатком указанной конструкции является возможность разрушения покрытия в результате значительного нагрева баллона лампы накачки, что ограничивает частоту следования импульсов (не более 3-5 Гц).
Наиболее близким к предлагаемому является твердотельный лазер с внешним поджигом, содержащий лампу накачки и активный элемент, в котором поджигающий электрод расположен на поверхности баллона лампы накачки (Основы лазерной техники. /Под ред. А.М.Прохорова, изд. Советское радио. - М., 1972 г., с. 255).
Хотя указанный лазер позволяет работать в режиме с повышенной частотой следования импульсов, недостатком его является необходимость изоляции осветителя относительно корпуса лазера, что, в свою очередь, усложняет конструкцию лазера, увеличивает его габариты, а также снижает надежность поджига лампы накачки ввиду возможных повреждений изоляции относительно корпуса лазера.
Цель изобретения - упрощение конструкции и повышение надежности работы лазера с повышенной частотой следования импульсов генерации.
Поставленная цель достигается тем, что в устройстве, содержащем расположенные в осветителе активный элемент, лампу накачки с поджигающим электродом, последний расположен в кварцевой трубке с запаянным концом, касающейся лампы накачки по всей длине ее разрядного промежутка.
Предложенное устройство может работать с повышенной частотой следования импульсов, при этом упрощается конструкция лазера и уменьшаются его габариты за счет исключения изоляции осветителя относительно металлического корпуса лазера. С исключением указанной изоляции исчезает возможность ее повреждения, что позволяет повысить надежность работы лазера.
На фиг. 1 и фиг.2 показан разрез лазера с размещенным в осветителе поджигающим электродом в кварцевой трубке.
Устройство содержит осветитель 1, активный элемент 2, лампу накачки 3 с поджигающим электродом 4, размещенным в кварцевой трубке 5 с запаянным концом 6 (фиг.2), контактирующей с лампой накачки 3 по всей длине ее разрядного промежутка.
Устройство работает следующим образом.
На поджигающий электрод 4, помещенный в кварцевую трубку 5, касающуюся баллона лампы накачки 3 по всей длине ее разрядного промежутка, подается высоковольтный импульс напряжением 10-12 кВ. К одному из электродов лампы накачки 3 приложено постоянное напряжение порядка 600-650 В. При подаче высоковольтного импульса на поджигающий электрод 4 происходит ионизация газа, наполняющего лампу накачки 3, через которую начинает протекать ток "дежурной дуги" порядка 10-15 мА. Лампа готова к разряду через нее импульса накачки.
В варианте конкретного выполнения поджигающий электрод 4, представляющий собой нихромовую проволоку диаметром 0,1-0,3 мм, помещен в кварцевую трубку 5 диаметром 1-1,5 мм с толщиной стенки 0,4-0,6 мм, контактирующую с лампой накачки 3 типа ИНП-3/45 по всей длине ее разрядного промежутка.
Кварцевая трубка 5 служит для предотвращения пробоя высоковольтного импульса на корпус лазера (на чертеже условно не показан). С целью герметизации поджигающего электрода 4 конец 6 (фиг.2) трубки 5 запаян. Выбор толщины стенки кварцевой трубки обусловлен электропрочность материала трубки. Диаметр трубки более 1,5 мм приводит к уменьшению эффективности осветителя, а толщина стенки трубки менее 0,4 мм нарушает ее электропрочность. Выбор кварца в качестве материала для изготовления трубки обусловлен его хорошими термофизическими свойствами, а также высокими температурами плавления, малым коэффициентом термического расширения, прозрачности кварца для излучения накачки.
По сравнению с прототипом предложенное устройство позволяет повысить надежность работы лазера с повышенной частотой следования импульсов генерации, что, в свою очередь, повышает информативность приборов с лазерами, позволяет применять высокоскоростные управляемые снаряды, осуществлять захват и сопровождение быстроперемещающихся целей. Лазеры подобной конструкции в отличие от прототипа могут быть как безжидкостными, так и с жидкостной системой охлаждения.
название | год | авторы | номер документа |
---|---|---|---|
ЛАЗЕР | 1985 |
|
RU2202845C2 |
ИМПУЛЬСНО-ПЕРИОДИЧЕСКИЙ ЛАЗЕР | 2001 |
|
RU2202847C2 |
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 1999 |
|
RU2187868C2 |
ИМПУЛЬСНО-ПЕРИОДИЧЕСКИЙ ЛАЗЕР | 1988 |
|
RU2197043C2 |
ЛАЗЕР | 1986 |
|
RU2202846C2 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ДВУХЧАСТОТНЫЙ ЛАЗЕР | 2002 |
|
RU2227950C2 |
СПОСОБ НЕОДНОРОДНОГО ВЫВОДА ЭНЕРГИИ СВОБОДНОЙ ГЕНЕРАЦИИ ВЫСШИХ ПОПЕРЕЧНЫХ ТИПОВ КОЛЕБАНИЙ ИЗ ЛАЗЕРА И ЛАЗЕР | 2003 |
|
RU2239921C1 |
СПОСОБ НАКАЧКИ АКТИВНОГО ЭЛЕМЕНТА ЛАЗЕРА И ЛАЗЕР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2000 |
|
RU2186445C2 |
УСТРОЙСТВО ЛУЧЕВОГО НАВЕДЕНИЯ УПРАВЛЯЕМОГО ОБЪЕКТА | 2003 |
|
RU2267733C2 |
ГЕНЕРАТОР ИМПУЛЬСОВ ТОКА | 2012 |
|
RU2494532C1 |
Изобретение относится к лазерной технике и может быть использовано в твердотельных лазерах. Устройство содержит осветитель, активный элемент, лампу накачки с поджигающим электродом, размещенным в кварцевой трубке с запаянным концом, контактирующей с лампой накачки по всей длине разрядного промежутка. Технический результат изобретения - повышение частоты следования импульсов лазера, уменьшение габаритов и упрощение конструкции лазера. 2 ил.
Твердотельный лазер, содержащий установленные в осветитель активный элемент и лампу накачки с поджигающим электродом, отличающийся тем, что, с целью повышения надежности работы лазера при одновременном повышении частоты следования импульсов генерации, поджигающий электрод размещен в кварцевой трубке, контактирующей с лампой накачки по всей длине ее разрядного промежутка, причем толщина трубки выбрана в пределах 0,4-1,5 мм.
БЕЛОСТОЦКИЙ Б.Р | |||
и др | |||
Основы лазерной техники | |||
- М.: Советское радио, 1972, с.255. |
Авторы
Даты
2003-05-10—Публикация
1987-03-24—Подача