Изобретение относится к области интегральной электроники и микросистемной техники, а более конкретно - к микрокапиллярным устройствам, использующим электрогидродинамический эффект.
Известна конструкция микронасоса термопневматического принципа действия, изготовленного с использованием LIGA-технологии (см. В.А. Колесников, Т.Я. Рахимбабаев. Микрожидкостные системы и их реализация с использованием LIGA-технологии, журнал "Микросистемная техника", 1, 1999 г., с.15-21, рис.2). Конструкция микронасоса (фиг. 1) содержит полупроводниковую пластину (1), входной и выходной клапаны (2, 3), пропускающие поток жидкости в одном направлении, титановый провод (4), рабочий объем (5) с мембраной (6), насосную камеру (7), электроды (8).
Признаками данного аналога, общими с заявляемым устройством, являются наличие полупроводниковой пластины и электродов.
Причиной, препятствующей достижению технического результата, является сложность конструкции, а также использование редкоземельных, дорогостоящих материалов (титан).
Известен интегральный микронасос, потребляющий малую мощность при напряжении питания 2,3 В (см. Kwang-Seor Yun, and other. "A Micropump Driven by Continuous Electrowetting Actuation for Low Voltage and Power Operations". Proc. of the 14-th IEEE MEMS 2001, Technical Digest, Orlango, Florida, USA, p. p. 487-490). Конструкция микронасоса (фиг.2) содержит полупроводниковую пластину из прорезиненного кремния (1), входную и выходную мембраны (2, 3), входной и выходной медные клапаны (4, 5), кремниевый канал (6), рабочую область (7), заполненную электролитом, в которой находится капелька ртути (8), платиновые электроды (9).
Признаками данного аналога, общими с заявляемым устройством, являются наличие полупроводниковой пластины и электродов.
Причиной, препятствующей достижению технического результата, является сложность конструкции, а также использование "прорезиненного" кремния, использование вредных (ртуть) и дорогостоящих (платина) материалов.
Из известных наиболее близким по технической сути к заявляемому объекту является кремниевый микронасос (см. А. Рихтер. Кремниевый микронасос - новое достижение микрообработки, "Электроника (Electronics)" 8 (837), 1990 г. с. 7-8).
Прототип представляет собой кремниевый микронасос (фиг.3), состоящий из двух электродов (1, 2), размещенных один над другим и представляющих собой две полупроводниковые пластины с V-образными отверстиями (4), образующими сетчатую структуру. Электроды разделены изолирующим слоем (3), представляющим собой изолирующую прокладку.
Насос не содержит никаких движущихся частей, не изнашивается, обладает высокой надежностью и прост в изготовлении.
Признаками данного прототипа, общими с заявляемым устройством, являются наличие электрода, представляющего собой полупроводниковую пластину с V-образными отверстиями, образующими сетчатую структуру, и изолирующего слоя.
Причиной, препятствующей достижению технического результата является необходимость совмещения двух сетчатых электродов между собой. Указанные обстоятельства ограничивают минимальные предельные размеры устройства и уменьшают производительность.
Задачей, на решение которой направлено предлагаемое изобретение, является уменьшение габаритов микронасоса и повышение производительности устройства.
Для достижения поставленной цели в микронасосе, содержащем электрод, выполненный из полупроводниковой пластины, представляющей собой сетчатую структуру с V-образными отверстиями по всей ее толщине, и изолирующий слой, вторым электродом является металлический слой, а изолирующим слоем является диэлектрическая пленка, разделяющая электроды, толщина которой определяет рабочий зазор между электродами, причем в диэлектрической пленке и металлическом слое выполнены сквозные отверстия, соответствующие узкой части V-образного отверстия.
На фиг.4 приведены топология (а) и структура (б) интегрального микронасоса.
Интегральный микронасос содержит полупроводниковую пластину (1), представляющую собой сетчатую структуру с V-образными отверстиями (4) по всей ее толщине, переходящими своей узкой частью в сквозные отверстия (5) в диэлектрическую пленку (2) и металлический слой (3).
Если этот микронасос поместить в трубку, с одной стороны которой подать полярную жидкость (содержащую ионы или диполи) и на полупроводниковую пластину (1) и металлический слой (3), разделенные диэлектрической пленкой (2), приложить напряжение, то в результате взаимодействия между неоднородным высоким электрическим полем, возникающим между узкой частью V-образного отверстия (4) и металлическим слоем (3), и ионами или диполями жидкости, возникнут силы, действующие на частицы жидкости, что приведет к возникновению движения жидкости через сквозные отверстия (5) в одном направлении.
Интегральный микронасос содержит, в отличие от прототипа, в качестве изолирующего слоя диэлектрическую пленку, толщина которой определяет рабочий зазор между полупроводниковой пластиной и металлическим слоем, причем его уменьшение позволяет снизить рабочее напряжение в зазоре при той же напряженности поля, т.е. повысить производительность устройства в 1,5-3 раза. А использование металлического слоя позволяет избежать совмещения и фиксации электродов.
название | год | авторы | номер документа |
---|---|---|---|
ИНТЕГРАЛЬНЫЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ | 1994 |
|
RU2079986C1 |
ИНТЕГРАЛЬНЫЙ МИКРОМЕХАНИЧЕСКИЙ АКСЕЛЕРОМЕТР НА ОСНОВЕ ТУННЕЛЬНОГО ЭФФЕКТА | 2005 |
|
RU2289822C1 |
ИНТЕГРАЛЬНЫЙ ПОЛЕВОЙ ТРАНЗИСТОР ШОТТКИ СО СТАТИЧЕСКОЙ ИНДУКЦИЕЙ | 2000 |
|
RU2183885C1 |
ИНТЕГРАЛЬНЫЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ | 1995 |
|
RU2094944C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОВЕРХНОСТНОГО ТОКОПРОВОДЯЩЕГО СЛОЯ ИЗДЕЛИЯ | 1999 |
|
RU2167392C2 |
УЛЬТРАЗВУКОВАЯ ЛИНИЯ ЗАДЕРЖКИ НА ОБЪЕМНЫХ АКУСТИЧЕСКИХ ВОЛНАХ | 2000 |
|
RU2169429C1 |
ШИРОКОПОЛОСНАЯ ЗИГЗАГООБРАЗНАЯ АНТЕННА С РЕФЛЕКТОРОМ | 1996 |
|
RU2122762C1 |
ИНТЕГРАЛЬНЫЙ БИПОЛЯРНЫЙ МАГНИТОТРАНЗИСТОР | 2001 |
|
RU2204144C2 |
СВЕРХВЫСОКОЧАСТОТНАЯ ЛИНИЯ ЗАДЕРЖКИ НА ОБЪЕМНЫХ АКУСТИЧЕСКИХ ВОЛНАХ | 2000 |
|
RU2168265C1 |
ВАРИКАП И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2015 |
|
RU2614663C1 |
Использование: в интегральной электронике и микросистемной технике, при производстве микрокапиллярных устройств, использующих электрогидродинамический эффект. Сущность изобретения: в интегральный микронасос, содержащий электрод, представляющий собой полупроводниковую пластину сетчатой структуры с V-образными отверстиями по всей ее толщине, и изолирующий слой, введены металлический слой, являющийся вторым электродом, а изолирующим слоем является диэлектрическая пленка, разделяющая электроды, толщина которой определяет рабочий зазор между электродами, причем в диэлектрической пленке и металлическом слое выполнены сквозные отверстия, соответствующие узкой части V-образного отверстия. Техническим результатом изобретения является уменьшение габаритов и повышение производительности устройства. 4 ил.
Интегральный микронасос, содержащий электрод, выполненный из полупроводниковой пластины, представляющей собой сетчатую структуру с V-образными отверстиями по всей ее толщине, и изолирующий слой, отличающийся тем, что вторым электродом является металлический слой, а изолирующим слоем является диэлектрическая пленка, разделяющая электроды, толщина которой определяет рабочий зазор между электродами, причем в диэлектрической пленке и металлическом слое выполнены сквозные отверстия, соответствующие узкой части V-образного отверстия.
РИХТЕР А | |||
Кремниевый микронасос - новое достижение микрообработки | |||
Электроника, №8(837), 1990, с.7 и 8 | |||
US 5759014 А, 02.06.1998 | |||
US 5529465 А, 25.06.1996 | |||
US 5375979 А, 27.12.1994 | |||
Ультразвуковой диспергатор | 1977 |
|
SU683793A1 |
DE 19637928 А1, 14.08.1997 | |||
Способ изготовления гранул пенополистирола | 1971 |
|
SU465229A1 |
МИКРОНАСОС | 1991 |
|
RU2030634C1 |
Авторы
Даты
2003-08-20—Публикация
2002-06-06—Подача