Область применения - теплообменники систем теплоснабжения и другие отрасли народного хозяйства - химическая, нефтеперерабатывающая, пищевая и т.д.
Известна конструкция теплообменной трубы для кожухотрубного теплообменника с интенсификатором теплообмена на ее внешней поверхности. Ее недостатком является низкая теплоотдача и образование отложений в виде шлама и накипи на внутренней поверхности трубы (1).
Наиболее близким по технической сущности к заявленному объекту является теплообменная труба, снабженная на внешней поверхности профилированными канавками (накаткой), а на внутренней поверхности - ответными плавно очерченными выступами, нанесенными с определенным шагом, шириной и глубиной (2).
Недостатки указанной теплообменной трубы - невысокая эксплуатационная надежность, так как вследствие низкой интенсивности теплообмена создаются условия для образования отложений на поверхностях теплообмена.
Технической задачей предлагаемого изобретения является интенсификация теплообмена на наружной и внутренней поверхностях теплообменной трубы и повышение ее эксплуатационной надежности.
Указанная задача решается тем, что теплообменная труба, снабженная на внешней поверхности профилированными канавками, а на внутренней поверхности - ответными плавно очерченными выступами, нанесенными с определенным шагом, шириной и глубиной, несколько труб собраны в пучок и закреплены в трубных досках, при этом каждая труба дополнительно снабжена на наружной поверхности искусственной шероховатостью, а на внутренней поверхности - ответной искусственной шероховатостью, расположенной рядами, параллельными продольной оси трубы, и по окружности трубы; концы труб на расстоянии l=К+20 мм не имеют канавок, а на расстоянии l1=К+10 мм не имеют искусственной шероховатости внутри и снаружи; шаг теплообменных труб в пучке (S) определяется соотношением где К - толщина, трубной доски, мм; Дн - наружный диаметр теплообменной трубы, мм.
Вышеперечисленные отличительные признаки являются новыми по сравнению с прототипом, поэтому заявляемое решение соответствует критерию "новизна".
1. Трубы собраны в пучок и закреплены в трубных досках, при этом каждая труба дополнительно снабжена на наружной поверхности искусственной шероховатостью, а на внутренней поверхности - ответной искусственной шероховатостью, расположенной рядами, параллельными продольной оси трубы, и по окружности трубы.
Искусственная шероховатость интенсифицирует теплообмен на внешней и внутренней поверхностях теплообменных труб, увеличивая тепловую мощность, снижает интенсивность отложений и тем самым повышается эксплуатационная надежность теплообменных труб, а следовательно, и самих теплообменных аппаратов.
2. Концы труб на расстоянии l=К+20 мм не имеют профильных канавок, а на расстоянии l1= К+10 мм не имеют искусственной шероховатости - это исключает возникновение в вальцовочных соединениях дополнительных внутренних напряжений, что обеспечивает высокую эксплуатационную надежность теплообменных труб.
3. Шаг (S) теплообменных труб в пучке снижен до 1,25-1,3, так как уменьшение расстояния между теплообменными трубами интенсифицирует процесс теплообмена на наружных поверхностях труб, что снижает величину отложений и повышает эксплуатационную надежность.
Устройство теплообменной трубы поясняется эскизами фиг.1, 2.
Теплообменная труба работает следующим образом.
При обтекании теплоносителем искусственной шероховатости в пристенной области происходит образование вихревых структур, под действием которых идет разрушение малоподвижного пограничного слоя жидкости. Образовавшиеся вихревые структуры не затрагивают ядро потока, а турбулизируют лишь пограничный слой, вызывая существенный рост коэффициента теплоотдачи на наружной и внутренней поверхностях теплообменной трубы, увеличивая коэффициент теплопередачи.
Предлагаемый метод интенсификации теплообмена в трубах является комбинированным и суть его состоит в том, что энергия вихрей, образованная плавно очерченным выступом, и энергия вихрей, образованная ответной искусственной шероховатостью, нанесенной между выступами на внутренней поверхности трубы, успела до следующего выступа частично диссипировать (перейти в тепловую энергию) и свести к минимуму перенос энергии в ядро потока, повышающей гидравлическое сопротивление теплообменной трубы.
Экономический эффект от внедрения предлагаемого изобретения достигается за счет экономии черного и цветного металла, повышения эксплуатационной надежности кожухотрубных теплообменников, снижения на 15-20% трудозатрат на очистку поверхностей теплообменных труб.
Источники информации
1. Патент Российской Федерации 2121122, 6F 28 D 7/00, F 28 F 1/36, 13/12 - аналог.
2. Ю. Г. Назмеев. "Теплообмен при ламинарном течении жидкости в дискретно-шероховатых каналах". Энергоатомиздат. Москва, 1998 г., стр.26, рис. 1.7 "Труба с винтовой накаткой" - прототип.
название | год | авторы | номер документа |
---|---|---|---|
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК | 2001 |
|
RU2182300C1 |
Устройство для исследования теплообмена | 1982 |
|
SU1054754A1 |
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК | 2008 |
|
RU2391613C1 |
МНОГОХОДОВОЙ КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК | 1992 |
|
RU2013740C1 |
СПОСОБ ФОРМИРОВАНИЯ НАНОРЕЛЬЕФА НА ТЕПЛООБМЕННЫХ ПОВЕРХНОСТЯХ ИЗДЕЛИЙ | 2010 |
|
RU2433949C1 |
РЕГЕНЕРАТИВНЫЙ ВОЗДУХОПОДОГРЕВАТЕЛЬ БЛОЧНО-СЕКЦИОННЫЙ | 2004 |
|
RU2265775C1 |
Теплообменник | 1989 |
|
SU1716296A1 |
ТЕПЛООБМЕННЫЙ АППАРАТ - БЛОЧНО-СЕКЦИОННЫЙ ВОЗДУХОПОДОГРЕВАТЕЛЬ, ТЕПЛООБМЕННЫЙ БЛОК АППАРАТА (ВАРИАНТЫ) | 2004 |
|
RU2339890C2 |
КОЖУХОТРУБНЫЙ ЗМЕЕВИКОВЫЙ ТЕПЛООБМЕННИК | 1996 |
|
RU2102673C1 |
Кожухотрубный теплообменник | 1986 |
|
SU1765672A1 |
Изобретение предназначено для применения в теплообменниках систем теплоснабжения в химической, нефтеперерабатывающей, пищевой промышленности. Изобретение содержит теплообменную трубу, снабженную на внешней поверхности профилированными канавками, а на внутренней поверхности - ответными плавно очерченными выступами, нанесенными с определенным шагом, шириной и глубиной, причем несколько труб собраны в пучок и закреплены в трубных досках, а каждая труба дополнительно снабжена на наружной поверхности искусственной шероховатостью, на внутренней поверхности - ответной искусственной шероховатостью, расположенной рядами, параллельными продольной оси трубы, и по окружности трубы; концы труб на расстоянии 1 = К + 20 мм не имеют канавок, а на расстоянии l1 = К + 10 мм не имеют искусственной шероховатости внутри и снаружи; шаг теплообменных труб в пучке (S) определяется соотношением где К - толщина трубной доски, мм; Дн - наружный диаметр теплообменной трубы, мм. Изобретение позволяет интенсифицировать теплообмен на наружной и внутренней поверхностях теплообменной трубы и повысить ее эксплуатационную надежность. 2 ил.
Теплообменная труба, снабженная на внешней поверхности профилированными канавками, а на внутренней поверхности - ответными плавно очерченными выступами, нанесенными с определенным шагом, шириной и глубиной, отличающаяся тем, что несколько труб собраны в пучок и закреплены в трубных досках, при этом каждая труба дополнительно снабжена на наружной поверхности искусственной шероховатостью, а на внутренней поверхности - ответной искусственной шероховатостью, расположенной рядами, параллельными продольной оси трубы, и по окружности трубы, концы труб на расстоянии l = К + 20 мм не имеют канавок, а на расстоянии l1 = К + 10 мм не имеют искусственной шероховатости внутри и снаружи, шаг теплообменных труб в пучке (S) определяется соотношением
где К - толщина трубной доски, мм;
Дн - наружный диаметр теплообменной трубы, мм.
НАЗМЕЕВ Ю.Г | |||
ТЕПЛООБМЕН ПРИ ЛАМИНАРНОМ ТЕЧЕНИИ ЖИДКОСТИ В ДИСКРЕТНО-ШЕРОХОВАТЫХ КАНАЛАХ | |||
- М.: ЭНЕРГОАТОМИЗДАТ, 1998, С.26 | |||
ТЕПЛООБМЕННЫЙ ЭЛЕМЕНТ | 1993 |
|
RU2027969C1 |
Теплообменная труба | 1982 |
|
SU1080001A1 |
Механическая форсунка | 1925 |
|
SU2427A1 |
Способ производства холода и криогенная установка для его осуществления | 1988 |
|
SU1537980A1 |
DE 4141240 Al, 14.12.1991. |
Авторы
Даты
2004-01-20—Публикация
2001-08-22—Подача