Звукопоглощающая конструкция Российский патент 2004 года по МПК E04B1/86 

Описание патента на изобретение RU2225484C1

Изобретение относится к области производства строительных изделий и предназначено для использования при строительстве промышленных и гражданских зданий с внутренними источниками шума. Изобретение также может быть использовано для внесения добавочного звукопоглощения в помещении с повышенными требованиями по акустике, а также в каналах, воздуховодах, шахтах для снижения шума, распространяющегося по ним.

Известная звукопоглощающая панель из пористого материала преимущественно для обшивки внутренней поверхности ограждающих конструкций не обладает необходимыми звукопоглощающими свойствами в области низких и высоких частот. (Авторское свидетельство СССР №344087, МПК: Е 04 С 2/46, опублик. 1972, Бюл. №21).

Известны звукопоглощающие конструкции на основе волокнистых звукопоглощающих материалов (И.И. Боголепов, Промышленная звукоизоляция, - Л.: Судостроение, 1986, с.301-303; Справочник по технической акустике, - Л.: Судостроение, 1980, с.320).

Недостатком таких звукопоглощающих конструкций является малая эффективность в области низких частот, а также необходимость их расположения на некотором расстоянии от акустически жесткой стенки, что требует дополнительных крепежных элементов и подбора этого расстояния.

Вторым существенным недостатком таких звукопоглощающих конструкций при их расположении непосредственно на стенке является необходимость исполнения панели из нескольких слоев с разной плотностью набивки.

Известна звукопоглощающая панель, поверхность которой выполнена в виде клиньев (треугольных призм) из звукопоглощающих материалов. (И.И. Боголепов, Промышленная изоляция, - Л.: Судостроение, 1986, с.336, рис. 9.14).

Недостатком данной звукопоглощающей панели является ее большая толщина, а также сложность изготовления поверхности в виде клиньев и необходимость оптимизации размеров этих клиньев.

Известна звукопоглощающая конструкция, содержащая многоячеистую раму с ребрами и поперечинами. (Авторское свидетельство СССР №787589, МПК: Е 04 В 1/82, опублик. 1980, Бюл. №46).

Недостатком этой конструкции является ее громоздкость и узость применения, т.к. она предназначена для использования при известном направлении шума и практически непригодна для промышленных и гражданских зданий.

Данное изобретение устраняет указанные недостатки аналогов и прототипа.

Техническим результатом изобретения является повышение коэффициента звукопоглощения в области низких частот, технологичность изготовления, возможность звукопоглощения при любом направлении потока звуковой энергии, согласование акустического входного импеданса с волновым сопротивлением среды.

Технический результат достигается тем, что звукопоглощающая конструкция, содержащая многоячеистую раму с ребрами и поперечинами, содержит набор прямоугольных панелей, в каждой панели выполнены ячейки с каналами, входным отверстием каждого канала служат ребра и поперечины ячейки, причем высота и длина каждого канала выбрана из условий

h(x)=h·e-δx; ;L=ln[h(eδA0-1)/0,1A0]/δ,

где h - толщина панели, δ - коэффициент крутизны канала, А0 - входной размер ребра ячейки, L - длина канала, h(x) - текущая высота канала, х - текущая координата.

Сущность изобретения поясняется на фиг.1-8.

На фиг.1 представлен фрагмент панели, где 1 - канал, 2 - стенки из звукопоглощающего материала, 3 - стена помещения, А0 - входной размер ребра ячейки, В0 - входной размер поперечины ячейки, d - поперечный размер ребер и поперечины ячейки (стенок канала).

На фиг.2 представлена геометрия каналов звукопоглощающей конструкции, где h - толщина панели (высота канала), х - текущая координата от начала канала, L - длина канала, 6 - коэффициент крутизны канала.

На фиг.3 представлена зависимость коэффициента звукопоглощения α конструкции от протяженности канала L. Кривые соответствуют L=0,2; 0,3; 0,4 м, А0 В0=0,1м; h=01м; d=0,01м.

На фиг.4 представлена зависимость коэффициента звукопоглощения конструкции от ее толщины h. Кривые соответствуют А0=0,05 м; В=0,1 м; L=0,3 м при h=0,1 м; h=0,15 м и h=0,2 м.

На фиг.5 представлена зависимость коэффициента звукопоглощения α конструкции от А0 - входного размера ребра ячейки при h=0,1 м; L=0,2 м; d=0,01 м; В0=0,1 м. Кривые соответствуют А0=0,025; 0,05 и 0,075 м.

На фиг.6 представлена зависимость коэффициента звукопоглощения α конструкции от входного размера поперечины ячейки Во. Входной размер ребра ячейки А0=0,1 м; h=0,1 м; d=0,01 м; L=0,2 м при В0=0,025; 0,05 м; 0,075 м.

На фиг.7 представлена зависимость коэффициента звукопоглощения α конструкции с параметрами А00=0,1 м; L=0,4 м от коэффициента звукопоглощения αст на стенках канала. Кривые соответствуют значениям αст=0,01; 0,05 и 0,1.

На фиг.8 приведены кривые для сопоставления эффективности изобретения (кривая 4) с конструкцией, равной ей по массе слоя звукопоглощающего материала толщиной 0,02 м, прилегающего к жесткой стенке (кривая 5) и отстоящей от стенки на расстоянии 0,08 м (кривая 6).

Рассмотрим работу и принцип действия звукопоглощающей конструкции.

Для того чтобы звукопоглощающая конструкция была высокоэффективной, необходимо выполнение двух условий: она должна обладать высоким внутренним поглощением звуковой энергии, и входной импеданс конструкции должен быть согласован с волновым сопротивлением среды. Для конструкции на основе волокнистых звукопоглощающих материалов (ЗПМ) такое согласование обычно достигается либо за счет дистанцирования слоя ЗПМ от жесткой стенки, на которую эта конструкция укрепляется, либо путем построения конструкции из большого количества слоев ЗПМ с плотностью набивки, незначительной для внешнего слоя и равномерно возрастающей по мере приближения к жесткой стенке. Переменная средняя плотность заполнения пространства звукопоглощающим материалом реализуется также при помощи треугольных призм (клиньев) из ЗПМ постоянной плотности, установленных на стену помещения вплотную друг к другу своими основаниями и обращенных острыми концами в сторону падающей звуковой волны. Такая конструкция, в частности, общепринята при обработке стен, потолка и пола заглушенных измерительных камер.

Осуществить эффективное звукопоглощение и согласование акустических импедансов позволяет данное изобретение с внутренними каналами ячеек, в которых происходит плавное нарастание акустического импеданса по мере продвижения звуковой волны от широкой части канала 1 к узкой части с одновременным поглощением звуковой энергии на его стенках 2, выполненных из тонкого слоя ЗПМ, конструкция расположена на стенке помещения 3 (фиг.1).

Входное отверстие канала имеет размеры А0·В0, причем входной размер поперечины ячейки Во не изменяется по длине канала. Толщина стенок канала, выполненных из ЗПМ, составляет d, полная толщина конструкции равна h. При этом стенки искривляются по закону h(x)=he-δx (фиг.2).

При условии А0, В0 ≤ λ0/6, где λ0 - длина звуковой волны в воздухе, фронт волны, распространяющейся вдоль канала, плоский и на всем протяжении перпендикулярен оси. Практически целесообразную протяженность канала 1 определяют из условия, что к концу его сечение уменьшается в 10 раз. Это условие позволяет определить длину канала 1 (фиг.2) из условия

L=ln[h(e-δA0-1)/0,1A0]/δ,

где h - толщина панели, δ - коэффициент крутизны канала, А0 -входной размер ребра ячейки, L - длина канала, h(x) - текущая высота канала, х - текущая координата.

Например, в случае А0=0,1 м; h=0,15 м; L≈0,4 м при δ=6 м-1, L≈0,3 м при δ=10 м-1 и 1≈0,2 м при δ=25 м-1.

Длина изогнутой стенки каналов L при указанных значениях δ получается равной 0,43 м; 0,35 м; 0,28 м вместо L=0,4 м; 0,3 м; 0,2 м соответственно.

На фиг.3 показаны частотные характеристики величины коэффициента звукопоглощения α в зависимости от геометрических параметров конструкции. Видно, что к заметному понижению частоты первого максимума эффективности конструкции, начиная с которой величина α приближается к предельному значению α≈1, приводит только увеличение длины L канала (фиг.3). Это обусловлено тем, что набег фазы звуковой волны на длине канала, необходимый для акустического согласования его входного импеданса, имеет место при большей длине звуковой волны. Незначительное понижение частоты дает также увеличение толщины h конструкции (фиг.4), приводящее при заданной длине L канала к увеличению его реальной протяженности Lp. Сама же эффективность возрастает при уменьшении размера А0, входного отверстия каналов (фиг.3) и мало зависит от размера В0 (фиг.6), поскольку в первом случае на длине L происходит более плавное изменение сечения канала, влекущее за собой уменьшение коэффициента отражения звуковой волны от конструкции. Некоторое увеличение эффективности наблюдается также при уменьшении толщины стенок d (без изменения на них коэффициента звукопоглощения αст), поскольку канал имеет большую величину локального коэффициента звукопоглощения, чем торцы стенок.

Кроме того, чрезмерное уменьшение величины коэффициента звукопоглощения αст на стенках канала (фиг.7), наряду с возрастанием максимальных (резонансных) значений общего коэффициента потерь α, приводит к уменьшению его среднего значения из-за антирезонансных провалов эффективности. Увеличение αст сглаживает частотную характеристику величины α, обусловливая тем самым возрастание ее среднего значения при снижении максимальных.

Плавное сужение каналов 1 существенно уменьшает отражение звуковых волн от конструкции с одновременной концентрацией звуковой энергии в узкой части каналов 1, где энергия интенсивно поглощается на стенках 2, т.к. они выполнены из звукопоглощающего материала, а также в звукопоглощающем материале, размещенном в концевой части канала 1. Изогнутая форма каналов 1 позволяет увеличить их длину, что повышает эффективность конструкции при ее малой толщине h.

На фиг.8 сопоставлена эффективность данной конструкции и равного ей по массе слоя звукопоглощающего материала, непосредственно прилегающего к жесткой стенке и отстоящего от нее на расстоянии 0,08 м. Предлагаемая конструкция обеспечивает величину коэффициента звукопоглощения, близкую к α≈1, начиная с существенно более низких частот. Таким образом, предложенная конструкция с согласованным акустическим импедансом обладает в области низких частот гораздо лучшим звукопоглощением. Это является ее основным преимуществом перед звукопоглотителями, имеющими слоистую структуру.

Поскольку направление потока звуковой энергии заранее не известно, звукопоглощающую конструкцию набирают из панелей (фрагмент панели приведен на фиг.1), ориентируемых в различных направлениях. Для вертикальной стенки это будут, например, направления вверх, влево, вниз, вправо. Меняя ориентацию панелей или рядов, получают максимальный коэффициент звукопоглощения. Такое исполнение звукопоглощающей конструкции приводит к согласованному акустическому импедансу и позволяет эффективно гасить шумы в области низких частот при любом направлении потока звуковой энергии.

Похожие патенты RU2225484C1

название год авторы номер документа
ЗВУКОПОГЛОЩАЮЩАЯ ЯЧЕИСТАЯ КОНСТРУКЦИЯ 2002
  • Белоусов Ю.И.
  • Мачнев В.Ю.
  • Степанов В.Б.
RU2228412C1
МНОГОСЛОЙНАЯ ЗВУКОИЗОЛИРУЮЩАЯ КОНСТРУКЦИЯ 2014
  • Гладилин Алексей Викторович
  • Маргулис Игорь Мильевич
  • Мачнев Владимир Юрьевич
  • Степанов Всеволод Борисович
  • Белоусов Юрий Исаакович
RU2570693C1
ГЛУШИТЕЛЬ ШУМА ДЛЯ ВЕНТИЛЯЦИОННОЙ СИСТЕМЫ КАБИНЫ САМОЛЕТА 1999
  • Гащенко В.П.
  • Севрюкова В.Г.
  • Шулькин А.Л.
RU2186712C2
УСТРОЙСТВО ДЛЯ ИМИТАЦИИ ЭХОЛОКАЦИОННЫХ ИМПУЛЬСОВ ДЕЛЬФИНА 2001
  • Дубровский Н.А.
RU2220462C2
КАЛОРИМЕТР 2002
  • Маргулис М.А.
RU2261418C2
Многослойная звукоизолирующая конструкция 2019
  • Гладилин Алексей Викторович
  • Мачнев Владимир Юрьевич
  • Степанов Всеволод Борисович
  • Белоусов Юрий Исаакович
RU2725357C1
ИНТЕГРАЛЬНЫЙ ШУМОЗАГЛУШАЮЩИЙ МОДУЛЬ АВТОТРАНСПОРТНОГО СРЕДСТВА 2012
  • Фесина Михаил Ильич
  • Малкин Илья Владимирович
  • Горина Лариса Николаевна
  • Самокрутов Александр Андреевич
  • Балуев Артем Алексеевич
RU2512134C2
РУЛОННЫЙ ЗВУКОИЗОЛИРУЮЩИЙ МАТЕРИАЛ 2000
  • Мачнев В.Ю.
  • Степанов В.Б.
  • Шилов Н.Д.
  • Чудновский А.И.
  • Юсупов К.Х.
RU2170310C1
Низкошумное техническое помещение 2019
  • Фесина Михаил Ильич
  • Дерябин Игорь Викторович
  • Горина Лариса Николаевна
  • Краснов Александр Валентинович
RU2716043C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЗВУКОПОГЛОЩАЮЩЕЙ КОНСТРУКЦИИ 2010
  • Волков Валерий Семенович
  • Шуль Галина Сергеевна
  • Выморков Николай Владимирович
  • Осауленко Анна Владимировна
  • Денисова Елена Владимировна
RU2435669C1

Иллюстрации к изобретению RU 2 225 484 C1

Реферат патента 2004 года Звукопоглощающая конструкция

Звукопоглощающая конструкция относится к области производства строительных изделий и предназначена для использования при строительстве промышленных и гражданских зданий с внутренними источниками шума. Технический результат - повышение коэффициента поглощения в области низких частот, технологичность изготовления, возможность звукопоглощения при любом направлении потока звуковой энергии, согласование акустического входного импеданса с волновым сопротивлением среды. Технический результат обусловлен тем, что звукопоглощающая конструкция, содержащая многоячеистую раму с ребрами и поперечинами, содержит набор прямоугольных панелей, в каждой панели выполнены ячейки с каналами, входным отверстием каждого канала служат ребра и поперечины ячейки. Высота и длина каждого канала выбраны из условий h(x)=h·e-δx; L=ln[h(eδA0-1)/0,1A0]/δ, где h - толщина панели, δ - коэффициент крутизны канала, А0 - входной размер ребра ячейки, L - длина канала, h(x) - текущая высота канала, х - текущая координата. 8 ил.

Формула изобретения RU 2 225 484 C1

Звукопоглощающая конструкция, содержащая многоячеистую раму с ребрами и поперечинами, отличающаяся тем, что она содержит набор прямоугольных панелей, в каждой панели выполнены ячейки с каналами, входным отверстием каждого канала служат ребра и поперечины ячейки, причем высота и длина каждого канала выбраны из условий

h(x)=h·e-δx; L=ln[h(eδAo-1)/0,1Aо]/δ,

где h - толщина панели; δ - коэффициент крутизны канала; Ао - входной размер ребра ячейки; L - длина канала; h(x) - текущая высота канала; х - текущая координата.

Документы, цитированные в отчете о поиске Патент 2004 года RU2225484C1

Экран для защиты от транспортных и промышленных шумов 1979
  • Чурилина Юлия Дмитриевна
  • Чурилин Александр Сергеевич
SU787589A1

RU 2 225 484 C1

Авторы

Белоусов Ю.И.

Мачнев В.Ю.

Степанов В.Б.

Даты

2004-03-10Публикация

2002-07-04Подача