КАЛОРИМЕТР Российский патент 2005 года по МПК G01H3/14 G01K17/06 G01N29/20 

Описание патента на изобретение RU2261418C2

Изобретение относится к теплофизическим приборам, предназначенным для регистрации термокинетики и полных тепловых эффектов различных процессов, например нитрования целлюлозы, растворения, анионной полимеризации и т.д., характеризующихся сравнительно быстрым и интенсивным тепловыделением в начальной стадии и чрезвычайно слабым и относительно медленным в конечной стадии.

Известны дифференциальные калориметры, успешно регистрирующие чрезвычайно слабые (единицы мкВт) и медленно изменяющиеся (практически любой длительности) тепловыделения, но не пригодные для быстрых (время нарастания несколько секунд) тепловыделений. (Физический энциклопедический словарь, М. Советская энциклопедия, 1983 г. с.240).

Известны дифференциальные калориметры, содержащие рабочую и эталонную ячейки с измерительными и компенсационными термобатареями, нагреватели, усилитель, интегратор, регистратор теплового потока и систему управления. В этих калориметрах имеется режим работы, при котором компенсационные термобатареи подключаются к выходу усилителя теплового потока, обеспечивая охват калориметрической ячейки тепловой обратной связью и тем самым повышение быстродействия калориметрической системы (Авторское свидетельство СССР №271076, МПК: G 01 К 17/00, 1968 г.). Нагреватели калориметрических ячеек служат для калибровки измерительного тракта. Однако быстродействие таких калориметров остается недостаточно высоким, так как эквивалентная постоянная времени ячеек с реакционным сосудом даже в компенсационном режиме составляет 15-20 с. Кроме того, компенсационный режим, основанный на эффекте Пельтье, не позволяет регистрировать тепловые потоки интенсивностью выше 0,1 Вт, таким образом, имеются существенные ограничения по возможности регистрации сравнительно быстрых и интенсивных тепловыделений.

Аналогичные недостатки имеет и калориметр, содержащий корпус, калориметрическую рабочую ячейку, калибровочный нагреватель, сменный сосуд, блок управления (Патент Российской Федерации №2017092, МПК: G 01 К 17/00, 1994 г., прототип).

Кроме того, прототип имеет массивный корпус и довольно сложную схему измерений изменения тепловой мощности, выделяемой в исследуемом объеме. Прототип не позволяет измерить поглощенную акустическую мощность в исследуемом объеме.

Данное устройство устраняет недостатки аналогов и прототипа.

Техническим результатом данного изобретения является возможность измерения поглощенной акустической мощности в исследуемом объеме, повышение быстродействия, уменьшение габаритов калориметра, упрощение схемы измерений.

Технический результат достигается тем, что в калориметре, содержащем корпус, калориметрическую рабочую ячейку, калибровочный нагреватель, сменный сосуд и блок управления, калориметрическая рабочая ячейка снабжена термостатируемой рубашкой, корпус снабжен съемной крышкой, оснащенной узлом ее перемещения и автономного крепления, на съемной крышке расположены датчик температуры, датчик времени работы ультразвукового излучателя, смеситель и калибровочный нагреватель, указанные датчики соединены с блоком управления, в крышке выполнено технологическое отверстие для закрепления в нем источника ультразвуковых колебаний. Датчик температуры выполнен в виде чувствительного элемента и мостовой схемы, расположенных в герметичном корпусе, а чувствительный элемент выполнен в виде термосопротивления или в виде термопары.

Блок управления служит для электрического питания датчиков, нагревателя и смесителя жидкости, для сопряжения датчиков с платой АЦП. В соответствии с управляющими сигналами от компьютера блок управления устанавливает мощность нагревателя и скорость вращения смесителя жидкости, включает и выключает нагреватель, а также (по желанию пользователя) обеспечивает возможность управлять компьютером включением и выключением калибруемого источника УЗ.

Существо изобретения поясняется на фигурах 1 - 4.

На фиг.1 представлена калориметрическая рабочая ячейка, где 1 - корпус ячейки, 2 - съемная крышка, 3 - датчик температуры, 4 - датчик времени работы излучателя, 5 - смеситель, 6 - калибровочный нагреватель, 7 - узел перемещения и автономного крепления крышки, 8 - термостатируемая рубашка.

Блок управления питается от сети 220 В и 50 Гц, пиковая мощность 300 Вт (не показан).

На фиг.2 представлена мостовая схема при использовании чувствительного элемента термодатчика, исполненного в виде термосопротивления, где U - напряжение питания схемы, R1 - терморезистор, R2, R3, R4 - резисторы, G - напряжение, с помощью которого по известным сопротивлениям R2, R3, R4 находят R1. Для повышения чувствительности моста, по крайней мере, одно из сопротивлений моста (в нашем случае R3), выполнено переменным.

На фиг.3 представлена мостовая схема при использовании чувствительного элемента термодатчика, выполненного в виде термопары, где G - э.д.с. термопары.

На фиг.4 представлены экспериментальные температурные зависимости от времени, где 1 - изменение температуры жидкости при воздействии на нее ультразвука, 2 - изменение температуры жидкости при первом включении нагревателя, 3 - изменение температуры при втором включении нагревателя.

Калориметр работает следующим образом.

При изменении акустической мощности излучателей типа ультразвуковой ванны (УЗ ванны), в УЗ ванну заливают жидкость. Съемную крышку 2 калориметрической ванны закрепляют так, чтобы датчики 3, 4, смеситель 5 и калибровочный нагреватель 6 были погружены в жидкость. Если измеряется акустическая мощность излучателя стержневого типа, дополнительно используют корпус 1 калориметрической ванны (фиг.1), в который заливают жидкость, в жидкость погружают акустический излучатель, и съемную крышку 2 калориметрической ванны закрепляют так, чтобы датчик температуры жидкости 3, смеситель 5 и калибровочный нагреватель 6 были погружены в жидкость.

Измерение акустической мощности происходит в несколько этапов. Вначале включают смеситель 5 до выравнивания температуры жидкости, в которую помещен излучатель звука. Считывают показания датчика температуры 3. Когда температура жидкости достигает равновесной, т.е. в течение заданного промежутка времени ее изменение меньше порогового, на несколько секунд включается источник звука, при этом датчиком температуры 3 регистрируют зависимость подъема температуры жидкости от времени ΔТУЗ(t) (здесь ΔT - разность между текущей температурой жидкости и ее температурой в момент включения ультразвука). Датчик времени работы излучателя 4 определяет время работы источника ультразвука tУЗ. Температура жидкости быстро возрастает, а после отключения ультразвука медленно спадает до равновесной. Задача состоит в определении такой тепловой мощности калибровочного нагревателя 6, чтобы при времени нагрева, равном времени работы источника ультразвука tУЗ, получить кривую ΔT(t), близкую к ΔTУЗ(t). Определенная таким образом тепловая мощность калибровочного нагревателя 6 считается равной поглощенной акустической мощности. При одинаковом времени нагрева, объеме жидкости и теплообмене кривые ΔT(t) для различных мощностей подобны (т.е. в любой момент времени t0 ΔT1(t0)/ΔT2(t0)=W1/W2 где индексы 1 и 2 соответствуют двум различным нагреваниям). Поэтому получив зависимость подъема температуры ΔTн(t) для нагревателя аналогично зависимости ΔТУЗ(t) и, зная мощность нагревателя, можно по отношению ΔT1(t0)/ΔT2(t0) для произвольного времени t0 определить мощность источника ультразвука. Исследования показали, что наилучшая точность получается при аппроксимации подъема температуры прямой, а спада экспонентой 1(или, при малом теплообмене, прямой). Рассчитываемый подъем температуры ΔТУЗmax, соответствующий пересечению прямой и экспоненты, пропорционален поглощенной акустической мощности. Задача состоит в определении такой тепловой мощности калибровочного нагревателя 6, чтобы при времени нагрева, равном времени работы источника звука, получить расчетный подъем температуры, равный ΔТУЗmax.

На следующем этапе (первая калибровка) вначале включают калибровочный нагреватель 6 на время работы источника ультразвука, при этом задается тепловая мощность, равная Wн1=Cν·V·ΔTУЗmax/tУЗ, где Сν -теплоемкость воды, V - объем воды. С помощью датчиков тока и напряжения на спирали калибровочного нагревателя 6 определяется зависимость тока I и напряжения U от времени, по которым с большой точностью определяют выделившуюся на калибровочном нагревателе 6 тепловую энергию и мощность, переданную жидкости: Wн1=(∫IUdt)/tУЗ.

С помощью датчика температуры 3 определяют зависимость ΔTн1(t). Температура жидкости быстро возрастает, а после отключения ультразвука медленно спадает до равновесной. По зависимости зависимость ΔTн1(t) рассчитывают ΔТн1max аналогично ΔТУЗmax.

На последнем этапе (повторная калибровка) проводят повторное, уточняющее измерение зависимости подъема температуры ΔTн2(t), при этом включают калибровочный нагреватель 6 на время τУЗ, а мощность задают равной W2=Wн1·ΔТУЗmax/ΔТн1max. По кривой ΔTн2(t) рассчитывают ΔТн2max. Окончательно акустическую поглощенную мощность рассчитывают по формуле Wак=Wн2·ΔТУЗmax/ΔТн2max.

Можно проводить еще одно или несколько уточняющих измерений аналогично повторной калибровке, в зависимости от требуемой точности, при этом для jго измерения задают мощность калибровочного нагревателя 6, равную Wн(j)=Wн(j-1)·ΔTYЗmax/ΔTн(j-1)max, а акустическая мощность после jго нагревания рассчитывается по формуле Wак=Wн(j) ΔТУЗmax/ΔТн(j)max.

Полученные зависимости температуры жидкости от времени в течение всего цикла измерений, тока и напряжения от времени при работе калибровочного нагревателя 6, а также результаты расчетов, записываются в файлы (если при работе прибора используется компьютер). По окончании измерений выводится протокол измерений, в котором записана акустическая мощность, а также условия, при которых проводились измерения (абсолютная температура жидкости на момент включения звука, объем жидкости, тип излучателя, дата и т.д.).

Если созданы условия, когда вся излученная мощность поглощается жидкостью с кавитационными пузырьками, то измеряют не только поглощенную, но и излученную источником ультразвука акустическую мощность. Для того чтобы соблюдалось условие равенства излученной и поглощенной мощностей, необходимо, чтобы стенки сосуда, в котором проводятся измерения, были не прозрачными для звуковых волн. Условие соблюдается, например, если сосуд снаружи окружен воздухом или любой другой средой, у которой акустический импеданс отличается от акустического импеданса жидкости не менее чем в 2 раза.

Похожие патенты RU2261418C2

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ АКУСТИЧЕСКОЙ МОЩНОСТИ 2001
  • Маргулис М.А.
RU2220405C2
КАЛОРИМЕТР ПЕРЕМЕННОЙ ТЕМПЕРАТУРЫ С ИЗОТЕРМИЧЕСКОЙ ОБОЛОЧКОЙ 2008
  • Бывальцев Юрий Александрович
  • Хрипушин Владимир Васильевич
  • Бондарева Лариса Петровна
  • Падалкин Юрий Александрович
  • Григорова Елена Вячеславовна
RU2371685C1
Прибор для определения параметров газовыделения 2016
  • Мясоедов Борис Федорович
  • Белова Елена Вячеславовна
  • Дживанова Заяна Викторовна
  • Скворцов Иван Владимирович
RU2620328C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ СЕРЫ В ДИЗЕЛЬНЫХ ТОПЛИВАХ 2011
  • Ванцов Андрей Викторович
  • Ванцов Виктор Иванович
  • Пащенко Василий Михайлович
RU2451288C1
Способ измерения теплопроводности твердых материалов 2017
  • Муриков Сергей Анатольевич
  • Краснов Максим Львович
  • Урцев Владимир Николаевич
  • Корнилов Владимир Леонидович
  • Самохвалов Геннадий Васильевич
  • Шмаков Антон Владимирович
  • Муриков Егор Сергеевич
  • Артемьев Игорь Анатольевич
  • Урцев Николай Владимирович
RU2654823C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МОЩНОСТИ УЛЬТРАЗВУКОВОГО ИЗЛУЧЕНИЯ 2009
  • Акопян Валентин Бабкенович
  • Бамбура Мария Владимировна
  • Рухман Андрей Александрович
  • Рухман Елена Петровна
  • Ступин Андрей Юрьевич
  • Чубатова Ольга Игоревна
  • Коновалова Людмила Геннадьевна
  • Коновалов Дмитрий Викторович
  • Нонгайяр Бертран
RU2421694C2
СПОСОБ ИЗМЕРЕНИЯ ИМПУЛЬСА ТЕПЛА 1992
  • Машкинов Л.Б.
  • Штейнберг М.Н.
  • Бабаян К.А.
  • Батылин В.В.
RU2065587C1
ЦИФРОВАЯ АВТОМАТИЗИРОВАННАЯ СХЕМА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ТЕПЛОВОЙ КАЛИБРОВКИ КАЛОРИМЕТРА ПЕРЕМЕННОЙ ТЕМПЕРАТУРЫ 2008
  • Каданцев Алексей Васильевич
  • Бондарева Лариса Петровна
  • Гайдин Артур Андреевич
  • Григорова Елена Вячеславовна
RU2377512C1
СПОСОБ КАЛОРИМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ СОРБЦИИ ВЕЩЕСТВ ИЗ РАСТВОРОВ 2008
  • Бондарева Лариса Петровна
  • Григорова Елена Вячеславовна
  • Корниенко Тамара Сергеевна
  • Веретенникова Антонина Викторовна
RU2378629C1
УСТРОЙСТВО ДЛЯ ВОЗДУШНОГО ТЕРМОСТАТИРОВАНИЯ КАЛОРИМЕТРИЧЕСКОЙ ЯЧЕЙКИ 2011
  • Бондарева Лариса Петровна
  • Каданцев Алексей Васильевич
  • Кривенко Надежда Николаевна
  • Жогова Анна Валерьевна
RU2485463C1

Иллюстрации к изобретению RU 2 261 418 C2

Реферат патента 2005 года КАЛОРИМЕТР

Изобретение относится к теплофизическим приборам. Калориметр для измерения акустической мощности содержит корпус, калориметрическую рабочую ячейку, а также датчик температуры, датчик времени работы источника ультразвуковых колебаний, смеситель и калибровочный нагреватель, соединенные с блоком управления. Калориметрическая ячейка снабжена термостатируемой рубашкой. Корпус снабжен съемной крышкой с узлом ее перемещения и автономного крепления. Датчик температуры, датчик времени работы источника ультразвуковых колебаний, смеситель и калибровочный нагреватель расположены на съемной крышке. В съемной крышке выполнено отверстие для закрепления источника ультразвуковых колебаний. Изобретение обеспечивает повышение быстродействия, уменьшение габаритов калориметра и упрощение схемы измерений. 3 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 261 418 C2

1. Калориметр для измерения акустической мощности, содержащий корпус, калориметрическую рабочую ячейку, калибровочный нагреватель и блок управления, отличающийся тем, что калориметрическая ячейка снабжена термостатируемой рубашкой, корпус снабжен съемной крышкой, оснащенной узлом ее перемещения и автономного крепления, датчик температуры, датчик времени работы источника ультразвуковых колебаний, смеситель и калибровочный нагреватель, соединенные с блоком управления, расположены на съемной крышке таким образом, чтобы при измерении указанные элементы были погружены в жидкость, при этом в съемной крышке выполнено технологическое отверстие для закрепления в нем источника ультразвуковых колебаний.2. Калориметр по п.1, отличающийся тем, что датчик температуры выполнен в виде чувствительного элемента и мостовой схемы, расположенных в герметичном корпусе.3. Калориметр по п.2, отличающийся тем, что чувствительный элемент выполнен в виде термосопротивления.4. Калориметр по п.2, отличающийся тем, что чувствительный элемент выполнен в виде термопары.

Документы, цитированные в отчете о поиске Патент 2005 года RU2261418C2

КАЛОРИМЕТР ДЛЯ ИЗМЕРЕНИЯ АКУСТИЧЕСКОЙ МОЩНОСТИ 0
SU270300A1
Измеритель мощности ультразвуковых колебаний 1976
  • Леонтьев Альберт Петрович
SU729453A1
Прибор для измерения интенсивности ультразвука 1958
  • Михайлов И.Г.
  • Шутилов В.А.
SU119000A1
ДИФФЕРЕНЦИАЛЬНЫЙ КАЛОРИМЕТР 1990
  • Гальперин Л.Н.
  • Неганов А.С.
RU2017092C1
DE 19836727 A1, 17.02.2000.

RU 2 261 418 C2

Авторы

Маргулис М.А.

Даты

2005-09-27Публикация

2002-05-27Подача