Изобретение относится к области строительства, а именно к строительству зданий и сооружений с монолитными железобетонными перекрытиями и покрытиями.
Известен способ снижения вредного влияния усадочных деформаций технологическим путем - бетонированием по ″захваткам″. Однако этот технологический прием не позволяет уменьшить влияние усадочных деформаций, связанных с наличием сцепления арматуры с бетоном.
Известен способ компенсации усадочных деформаций путем создания предварительных напряжений в железобетонных элементах. Однако для монолитных покрытий и перекрытий данный способ сложен в исполнении по техническим и экономическим причинам.
Известен способ исключения усадочных деформаций путем применения безусадочного или расширяющегося цемента. Однако безусадочный и расширяющийся цементы дороги и обладают рядом особенностей, препятствующих их широкому распространению.
Известен способ снижения усадочных деформаций бетона путем вакуумирования свежеуложенного бетона. Однако этот способ удорожает строительство и только лишь частично уменьшает усадочные свойства бетонной смеси.
Известен способ по авторскому свидетельству СССР №337482, кл. Е 04 G 23/02, 1972 г., принятый заявителем за прототип. Согласно этому способу с целью устранения прогиба плиту перекрытия подвергают обратному выгибу посредством воздушной подушки, соприкасающейся с нижней поверхностью плиты перекрытия.
Данный способ, усиливая железобетонные плиты перекрытия зданий и сооружений, окончательно не избавляет их от усадочных напряжений и образующихся при этом трещин.
Известна опалубка для бетонирования монолитных перекрытий в виде различных оболочек, в том числе и пологих (см. Инженерные конструкции под редакцией Ермолова В.В., М., Высшая школа, 1991 г., стр. 283-287). Она предназначена для формирования покрытий, которые и после распалубки не теряют форму оболочки с тем, чтобы в бетоне проявлялись в основном сжимающие напряжения, на которые он хорошо работает. Кроме того, эта опалубка предназначена для формирования конструкций лишь с относительно малыми стрелами подъема ƒ<0,1 пролета, но она не предусматривалась не только для стрел подъема с исключительно малыми величинами ƒ<0,01, но и с регулируемыми величинами координат изготавливаемой оболочки. А также не предусматривалась регулировка ее параметров, тем более в зависимости от усадочных свойств применяемого бетона.
Известна подвижная опалубка для бетонирования перекрытий по свидетельству Российской Федерации на полезную модель №12892, кл. Е 04 G 11/38, 2000 г., принятая заявителем за прототип для опалубки. Она содержит плоский настил, установленный на поперечных балках, продольные балки, закрепленные на поперечных балках, и стойки.
Недостатком этой опалубки является невозможность ее использования для создания строительного подъема в виде пологой оболочки с малой стрелой подъема.
Являясь прогрессивными, с точки зрения экономики и комфортности по устройству жилья и административных сооружений, монолитные железобетонные перекрытия обладают, тем не менее, рядом недостатков. Серьезным недостатком, снижающим надежность работы сооружения и нарушающим его сплошность, является проявление в монолитном перекрытии усадочных деформаций. Усадочные деформации бетона вызывают растягивающие напряжения в бетоне, с одной стороны, в результате статической неопределимости самого перекрытия, объединенного в каркас здания, а с другой (что наиболее значимо), в связи с наличием сцепления арматуры с бетоном. Величина усадочных деформаций бетона колеблется в пределах ξsh ≈ 0,0002...0,0008, при предельной растяжимости бетона ξsh ≈ 0,0002...0,0004. Для монолитных перекрытий применяется подвижная бетонная смесь и значение усадочных деформаций достигает как минимум средних значений: 0,0005...0,0006. Сравнивая величину предельной растяжимости бетона с величиной усадочных напряжений, становится очевидным, что, если задержать развитие усадочных деформаций либо в результате статической неопределимости конструкции, либо в результате совместной работы бетона и арматуры, то процесс образования усадочных трещин неизбежен.
Технической задачей предлагаемого изобретения является снижение или полное исключение растягивающих напряжений в бетоне, возникающих в монолитном перекрытии или покрытии в результате проявления усадочных деформаций.
Поставленная задача решается тем, что в предлагаемом решении обратный выгиб выполняют при бетонировании посредством опалубки с рабочей палубой в форме оболочки, причем рабочую палубу выполняют в виде герметичной подвижной камеры.
Кроме того, основание камеры выполняют жестким, а рабочую поверхность - эластичной, камеру заполняют жидкостью и тем самым придают рабочей поверхности форму оболочки с расчетной стрелой подъема, выдерживают ее при постоянном давлении до набора прочности бетоном, затем для снижения усадочных деформаций и закрытия усадочных трещин уменьшают стрелу подъема оболочки путем поэтапного скачивания жидкости, этапы выбирают на стадиях набора прочности бетоном более 25%, более 40%, более 60%, а после набора бетоном 80% прочности осуществляют распалубку.
Кроме того, обратный выгиб перекрытия выполняют в форме оболочки, образованной поверхностью второго порядка.
Кроме того, стрелу подъема оболочки определяют в зависимости от значений величины усадочных деформаций бетона, решая совместно следующую систему уравнений:
где R - радиус оболочки;
S - длина образующей оболочки между неподвижными точками;
εsh - относительная величина усадочных деформаций бетона;
L - расстояние между неподвижными точками;
α - угол между радиусами, соединяющими центр оболочки и концы образующей;
ƒ - стрела подъема оболочки.
Кроме того, рабочая палуба выполнена в форме оболочки и в виде герметичной подвижной камеры, основание которой выполнено жестким, а рабочая поверхность - эластичной, причем рабочая поверхность выполнена с расчетной стрелой подъема, а камера заполнена жидкостью.
На фиг.1 изображена опалубка с рабочей палубой в виде герметичной подвижной камеры;
на фиг.2 - узел I на фиг.1;
на фиг.3 - схема определения зависимости для ƒ, R и α.
Устройство для снижения усадочных деформаций в монолитных железобетонных перекрытиях выполнено в виде опалубки 1, содержащей стол 2 с рабочей палубой, которая выполнена в форме оболочки и в виде герметичной подвижной камеры. Основание 3 камеры выполнено жестким, а ее верх, рабочая поверхность 4 - эластичной. Причем рабочая поверхность 4 выполнена с расчетной стрелой подъема ƒ.
Снижение усадочных деформаций осуществляют следующим образом.
Перекрытию 5 придают обратный выгиб 6, который выполняют при бетонировании посредством опалубки 1 с рабочей палубой в форме оболочки. Причем рабочую палубу выполняют в виде герметичной подвижной камеры. Основание 3 камеры выполняют жестким, а рабочую поверхность 4 - эластичной. Камеру заполняют жидкостью и, тем самым, придают рабочей поверхности 4 форму оболочки с расчетной стрелой подъема ƒ так, что после снятия опалубки 1 перекрытие 5, получая прогиб, равный величине стрелы подъема, становится плоским, обеспечивая компенсацию усадочных деформаций возникающим распором по контуру оболочки.
Кроме того, с помощью предлагаемого устройства обратный выгиб 6 перекрытия 5 могут выполнять в форме оболочки, которая образована поверхностью второго порядка, например, эллиптического параболоида, гиперболического параболоида, эллиптического цилиндра, гиперболического цилиндра, параболического цилиндра и т.п.
Значительная часть усадочных деформаций может происходить еще до распалубки изделий. Для исключения образования трещин или значительных растягивающих напряжений в бетоне, набирающем прочность, используют предлагаемое устройство с возможностью регулирования координат формообразующего листа опалубки. Камеру заполняют жидкостью 7. При закачке жидкости 7 в герметичную полость камеры рабочая поверхность 4 принимает форму оболочки. Бетонирование можно осуществлять как до подъема рабочей поверхности 4, так и после. Форму рабочей поверхности 4 с расчетной стрелой подъема ƒ выдерживают при постоянном давлении до набора прочности бетоном. Затем для снижения усадочных деформаций и закрытия усадочных трещин уменьшают стрелу подъема оболочки путем поэтапного скачивания жидкости 7. Этапы выбирают на стадиях набора бетоном более 25% прочности, более 40% прочности и более 60%. После набора бетоном 80% прочности осуществляют распалубку. Уменьшение при этом стрелы подъема ƒ оболочки приводит к компенсации растягивающих усадочных деформаций и закрытию трещин.
Параметры стрелы подъема оболочки определяют из условия равенства абсолютного значения усадочных деформаций и различия между длиной образующей 8 рабочей поверхности 4 оболочки между неподвижными точками перекрытия 5 и расстоянием между неподвижными точками перекрытия 5. При этом тип оболочки определяет принимаемый ею радиус. Для этого решают совместно систему уравнений.
Для компенсации усадочных деформаций по предлагаемому способу необходимо, чтобы длина S образующей 8 равнялась
где L - расстояние между осями колонн или длина проекции между несущими стенами.
С другой стороны, из фиг.3 следует
Из фиг.3 также следует, что
и стрела подъема оболочки будет равна
В результате четыре уравнения 1, 2, 3 и 4 с четырьмя неизвестными: S, α, R, ƒ позволяют определить их значения. Проектируя расстояние L и зная величину усадочных деформаций εsh, из совместного решения системы уравнений 1-4 определяют значения необходимых величин.
Для примера в таблице 1 приведены значения ƒ, R и α при L=6000 мм для бетонов с различными значениями усадочных деформаций εsh.
Использование предлагаемого изобретения позволяет исключить или, по крайней мере, снизить растягивающие напряжения в бетоне, приводящие к образованию трещин в монолитном перекрытии в результате проявления усадочных деформаций.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СНИЖЕНИЯ УСАДОЧНЫХ ДЕФОРМАЦИЙ И СИЛОВЫХ ПЕРЕМЕЩЕНИЙ В МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ ПЕРЕКРЫТИЯХ | 2005 |
|
RU2285095C1 |
ОПАЛУБКА ДЛЯ БЕТОНИРОВАНИЯ МОНОЛИТНОГО ПЕРЕКРЫТИЯ | 2001 |
|
RU2213836C2 |
Способ изготовления изделий под давлением из высокопрочного фибробетона | 2016 |
|
RU2641363C1 |
СПОСОБ ВОЗВЕДЕНИЯ МОНОЛИТНЫХ КОНСТРУКЦИЙ ЗДАНИЙ И НЕСЪЁМНАЯ УНИВЕРСАЛЬНАЯ МОДУЛЬНАЯ ОПАЛУБОЧНАЯ СИСТЕМА | 2014 |
|
RU2552506C1 |
Способ строительства сооружения | 2019 |
|
RU2706288C1 |
Способ возведения облегчённых перекрытий многоэтажных зданий | 2017 |
|
RU2652402C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МОНОЛИТНОЙ ПАНЕЛИ ПЕРЕКРЫТИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2192522C2 |
Несъёмная опалубочная система для крупноблочного строительства сооружений | 2019 |
|
RU2720548C1 |
КОМПЛЕКТ НЕСЪЕМНОЙ ОПАЛУБКИ, СПОСОБ ЕЕ СБОРКИ И СПОСОБ ВОЗВЕДЕНИЯ МОНОЛИТНЫХ СТЕН ЗДАНИЯ И СООРУЖЕНИЯ В НЕСЪЕМНОЙ ОПАЛУБКЕ ИЗ МОДУЛЬНЫХ ЭЛЕМЕНТОВ | 2013 |
|
RU2561135C2 |
СТЫКОВОЕ СОЕДИНЕНИЕ ЖЕЛЕЗОБЕТОННОГО ПЕРЕКРЫТИЯ С КОЛОННОЙ | 2005 |
|
RU2305159C2 |
Изобретение относится к области строительства, а именно к строительству зданий и сооружений с монолитными железобетонными перекрытиями и покрытиями. Техническим результатом изобретения является снижение или полное исключение растягивающих напряжений в бетоне, возникающих в конструкции в результате проявления усадочных деформаций. В способе снижения усадочных деформаций путем придания перекрытию обратного выгиба последний выполняют при бетонировании посредством опалубки в виде герметичной подвижной камеры, основание которой выполняют жестким. Камеру заполняют жидкостью и тем самым придают рабочей поверхности форму оболочки с расчетной стрелой подъема, выдерживают ее при постоянном давлении до набора прочности бетоном, затем для снижения усадочных деформаций и закрытия усадочных трещин уменьшают стрелу подъема оболочки путем поэтапного скачивания жидкости, этапы выбирают на стадиях набора прочности бетоном более 25%, более 40%, более 60%, а после набора бетоном 80% прочности осуществляют распалубку. 2 с. и 2 з.п.ф-лы, 1 табл., 3 ил.
где R - радиус оболочки;
S - длина образующей оболочки между неподвижными точками;
εsh - относительная величина усадочных деформаций бетона;
L - расстояние между неподвижными точками;
α - угол между радиусами, соединяющими центр оболочки и концы образующей;
f - стрела подъема оболочки.
0 |
|
SU337482A1 | |
Опалубка | 1987 |
|
SU1491997A1 |
Способ усиления железобетонных балок | 1984 |
|
SU1252460A1 |
Авторы
Даты
2004-04-20—Публикация
2002-04-10—Подача