КОРПУС ПАРОПЕРЕГРЕВАТЕЛЬНОГО КАНАЛА КИПЯЩЕГО ВОДО-ВОДЯНОГО ЯДЕРНОГО РЕАКТОРА Российский патент 2004 года по МПК G21C3/06 

Описание патента на изобретение RU2227334C2

Изобретение относится к ядерной технике, а более конкретно к корпусам пароперегревательных каналов кипящего водо-водяного ядерного реактора.

Наиболее близким по совокупности существенных признаков к изобретению является корпус пароперегревательного канала кипящего водо-водяного ядерного реактора, выполненный в виде силовой трубы (Г.Н. Ушаков. Технологические каналы и тепловыделяющие элементы ядерных реакторов. М.: Энергоиздат, 1981, с.109, рис.2.16).

Недостатком известного корпуса пароперегревательного канала является его нагрев паром, находящимся внутри силовой трубы, что может привести к закипанию теплоносителя, омывающего наружные стенки силовой трубы, в случае, когда температура пара превысит температуру насыщения воды снаружи трубы. Наличие паровой фазы в окружающей воде вызовет ухудшение нейтронно-физической обстановки вблизи канала, а кипение воды на внешней поверхности силовой трубы, которое будет протекать в условиях перемежаемости водяного и парового объемов замедлителя, приведет к нейтронно-физической неустойчивости, к нарушению условий поддержания нейтронного баланса и к ухудшению регулирования ядерного реактора в целом.

Задачей настоящего изобретения является создание корпуса пароперегревательного канала, использование которого позволит исключить возможность закипания воды (замедлителя) и, как следствие, повысить нейтронно-физическую устойчивость кипящего водо-водяного ядерного реактора.

Техническим результатом настоящего изобретения является уменьшение перетока тепловой энергии от пара, находящегося внутри силовой трубы, к воде, омывающей корпус снаружи, за счет увеличения термического сопротивления, т.е. улучшения термоизолирующего свойства корпуса пароперегревательного канала.

Указанный технический результат достигается тем, что в корпусе пароперегревательного канала кипящего водо-водяного ядерного реактора, выполненном в виде силовой трубы, силовая труба установлена в обечайку, при этом между трубой и обечайкой образован кольцевой зазор, который содержит теплоизолирующий пористый слой из материала с малым сечением поглощения нейтронов и герметично закрыт по торцам.

Кроме этого, в качестве материала теплоизолирующего слоя использован оксид циркония или оксид алюминия, содержащий не более 0,3 процента примеси оксида гафния.

Кроме этого, теплоизолирующий слой выполнен в виде покрытия, нанесенного на наружную поверхность силовой трубы или на внутреннюю поверхность обечайки плазменный напылением.

Кроме этого пористость теплоизолирующего слоя составляет 12-18% от объема слоя.

Кроме этого концы обечайки соединены с силовой трубой сварным швом, выполненным аргонодуговой сваркой.

Сущность изобретения поясняется чертежом, на котором изображен продольный разрез корпуса пароперегревательного канала.

Корпус пароперегревательного канала выполнен в виде силовой трубы 1, которая установлена в обечайку 2 так, что между ними образован кольцевой зазор 3, в котором размещен теплоизолирующий пористый слой 4 из материала с малым сечением поглощения нейтронов, который за счет своей пористой структуры уменьшает тепловой поток от теплоносителя, находящегося внутри силовой трубы 1, к наружной воде, омывающей обечайку 2, и одновременно не ухудшает нейтронно-физические характеристики ядерного реактора. Кольцевой зазор 3 по торцам герметично закрыт, например, с помощью сварного шва, полученного электронно-лучевой сваркой концов обечайки 2 с силовой трубой 1. Герметичность соединения обечайки и силовой трубы исключает попадание воды в кольцевой зазор 3 и в пористый слой 4, что приводит к сохранению целостности теплоизолирующего слоя 4 и обечайки 2, поскольку иначе при наличии воды в кольцевом зазоре 3 пористый слой 4 может трескаться и крошиться, а при попадании воды на горячую поверхность силовой трубы 1 может произойти закипание и испарение воды, что приведет в условиях ограниченного объема к резкому повышению давления и к раздутию и разрыву обечайки 2. Выполнение сварного шва электронно-лучевой сваркой позволит дополнительно уменьшить тепловой поток от теплоносителя, находящегося внутри силовой трубы 1, к наружной воде за счет образования в кольцевом зазоре 3 вакуума, поскольку технологией электронно-лучевой сварки предусматривается ее выполнение в условиях вакуума. Теплоизолирующий слой 4 может быть нанесен на наружную поверхность силовой трубы 1 или на внутреннюю поверхность обечайки 2 посредством плазменного напыления с заданной пористостью в пределах 12-18% от объема слоя. В качестве материала покрытия может быть использован оксид циркония или оксид алюминия, которые содержат не более 0,3% примеси оксида гафния. Обечайка 2 выполнена из материала, идентичного или близкого по составу с металлом силовой трубы 1.

При работе пароперегревательного канала теплоноситель - водяной пар (пароводяная смесь) поступает в полость корпуса, т.е. в полость силовой трубы 1. Пар проходит мимо тепловыделяющих элементов, отбирает выделяемое в них тепло и нагревается. На выходе из силовой трубы 1 пар имеет более высокую температуру, чем на входе в нее. Снаружи обечайки 2 течет вода с температурой ниже температуры насыщения. В результате разницы температур пара, проходящего внутри силовой трубы 1, и воды, омывающей наружные стенки обечайки 2, происходит переток тепла от пара к воде. Общее термическое сопротивление пакета, составленного из силовой трубы 1, теплоизолирующего пористого слоя 4 и обечайки 2, позволяет значительно уменьшить переток тепла, что полностью исключает возможность закипания воды (появление паровой фазы), а следовательно, сохраняет нейтронно-физическую устойчивость кипящего водо-водяного ядерного реактора и обеспечивает надежность регулирования реактора в целом.

Похожие патенты RU2227334C2

название год авторы номер документа
ТЕХНОЛОГИЧЕСКИЙ ИСПАРИТЕЛЬНО-ПАРОПЕРЕГРЕВАТЕЛЬНЫЙ КАНАЛ ПРЯМОТОЧНОГО ВОДО-ВОДЯНОГО ЯДЕРНОГО РЕАКТОРА 1996
  • Васильев С.И.
  • Иванов Ю.А.
  • Карасев Э.К.
  • Карташев Е.Ф.
  • Перемыщев В.В.
RU2106700C1
УСТРОЙСТВО ДЛЯ ПАССИВНОЙ ЗАЩИТЫ ЯДЕРНОГО РЕАКТОРА 2015
  • Кубинцев Борис Борисович
  • Леонов Виктор Николаевич
  • Чернобровкин Юрий Васильевич
  • Родина Елена Александровна
  • Шевченко Алексей Борисович
  • Слесарев Игорь Сергеевич
RU2608826C2
ПАРОГЕНЕРИРУЮЩЕЕ УСТРОЙСТВО 2006
  • Хорьков Марк Георгиевич
  • Кудинович Игорь Владиславович
  • Воронцов Александр Владимирович
RU2307981C1
ТЕХНОЛОГИЧЕСКИЙ ПАРОПЕРЕГРЕВАТЕЛЬНЫЙ КАНАЛ ПРЯМОТОЧНОГО ВОДО-ВОДЯНОГО ЯДЕРНОГО РЕАКТОРА 2011
  • Комов Александр Тимофеевич
  • Варава Александр Николаевич
  • Болтенко Эдуард Алексеевич
  • Мясников Виктор Васильевич
  • Захаренков Александр Валентинович
  • Ильин Александр Валентинович
RU2473986C1
ЯДЕРНЫЙ РЕАКТОР ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ ТЕПЛОСНАБЖЕНИЯ И СПОСОБ (ВАРИАНТЫ) АВТОРЕГУЛИРОВАНИЯ МОЩНОСТИ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ ТЕПЛОСНАБЖЕНИЯ 2006
  • Казанский Юрий Алексеевич
  • Левченко Валерий Алексеевич
  • Баршевцев Владимир Александрович
  • Белугин Владимир Александрович
  • Дорохович Сергей Леонидович
RU2317602C2
КИПЯЩИЙ ЯДЕРНЫЙ РЕАКТОР И ЯДЕРНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА, В КОТОРОЙ ОН ИСПОЛЬЗУЕТСЯ 1994
  • Колчев Николай Петрович
RU2118001C1
ЯДЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МНОГОРАЗОВОГО ИСПОЛЬЗОВАНИЯ 2020
  • Писарев Александр Николаевич
  • Сенявин Александр Борисович
  • Павшук Владимир Александрович
RU2760079C1
СИСТЕМА ЗАЩИТЫ ЗАЩИТНОЙ ОБОЛОЧКИ РЕАКТОРНОЙ УСТАНОВКИ ВОДО-ВОДЯНОГО ТИПА 1995
  • Сидоров А.С.
  • Носенко Г.Е.
  • Нигматулин Б.И.
  • Клейменова Г.И.
RU2106026C1
ЯДЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 1993
  • Дьяков Е.К.
RU2072568C1
РЕАКТОР С ПЕРЕГРЕВОМ ПАРА 1992
  • Царенко Анатолий Иванович[Ua]
  • Шевченко Мария Платоновна[Ua]
RU2094859C1

Реферат патента 2004 года КОРПУС ПАРОПЕРЕГРЕВАТЕЛЬНОГО КАНАЛА КИПЯЩЕГО ВОДО-ВОДЯНОГО ЯДЕРНОГО РЕАКТОРА

Использование: в ядерной технике. Корпус пароперегревательного канала кипящего водо-водяного ядерного реактора выполнен в виде силовой трубы, которая установлена в обечайку. Между трубой и обечайкой образован кольцевой зазор, который содержит теплоизолирующий пористый слой из материала с малым сечением поглощения нейтронов и герметично закрыт по торцам. Технический результат: уменьшение перетока тепловой энергии от пара, находящегося внутри силовой трубы, к воде, омывающей корпус снаружи, за счет увеличения термического сопротивления, т.е. улучшения термоизолирующего свойства корпуса пароперегревательного канала. 7 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 227 334 C2

1. Корпус пароперегревательного канала кипящего водо-водяного ядерного реактора, выполненный в виде силовой трубы, отличающийся тем, что силовая труба установлена в обечайке, при этом между трубой и обечайкой образован кольцевой зазор, который содержит теплоизолирующий пористый слой из материала с малым сечением поглощения нейтронов и герметично закрыт по торцам.2. Корпус по п.1, отличающийся тем, что в качестве материала теплоизолирующего слоя использован оксид циркония или оксид алюминия, содержащий не более 0,3 % примеси оксида гафния.3. Корпус по п.1 или 2, отличающийся тем, что теплоизолирующий слой выполнен в виде покрытия, нанесенного на наружную поверхность силовой трубы.4. Корпус по п.1 или 2, отличающийся тем, что теплоизолирующий слой выполнен в виде покрытия, нанесенного на внутреннюю поверхность обечайки.5. Корпус по пп.1, или 2 и 3, или 2 и 4, отличающийся тем, что пористость теплоизолирующего слоя составляет 12-18% от объема слоя.6. Корпус по п.3 или 4, отличающийся тем, что покрытие выполнено плазменным напылением.7. Корпус по пп.1, или 2, или 2 и 3, или 2 и 4, или 3 и 5, или 4 и 5, или 3, 5 и 6, или 4, 5 и 6, отличающийся тем, что концы обечайки соединены с силовой трубой сварным швом.8. Корпус по п.7, отличающийся тем, что сварной шов выполнен электронно-лучевой сваркой.

Документы, цитированные в отчете о поиске Патент 2004 года RU2227334C2

УШАКОВ Г.Н
Технологические каналы и тепловыделяющие элементы ядерных реакторов
- М.: Энергоиздат, 1981
Шкив для канатной передачи 1920
  • Ногин В.Ф.
SU109A1
Вопросы конструирования ядерных реакторов
- М.: Атомиздат, 1970, с.96-97.

RU 2 227 334 C2

Авторы

Иванов В.М.

Карасев Э.К.

Карпунин А.А.

Карташев Е.Ф.

Кузовиткин В.Ф.

Ханыгин В.Ю.

Даты

2004-04-20Публикация

2002-06-17Подача