Предлагаемое изобретение относится к области аналитического приборостроения и может быть использовано в кулонометрических гигрометрах.
Известна кулонометрическая ячейка (а.с. №1357814, G 01 N 27/02), состоящая из расположенных во внутреннем канале диэлектрического корпуса проволочных платиновых геликоидальных электродов, пленки сорбента, покрывающей электроды, и выводов к наружной поверхности корпуса.
В качестве пленки сорбента применяется, например, пленка частично гидратированного фосфорного ангидрида P2O5. К электродам через выводы на наружной поверхности корпуса подводится электрическое напряжение постоянного тока.
Анализируемый газ пропускается по внутреннему каналу корпуса со стороны рабочей части. В ячейке непрерывно происходят два процесса: практически полное поглощение влаги пленкой гигроскопического вещества с образованием фосфорной кислоты и электролиз воды на водород и кислород с регенерацией фосфорного ангидрида,
Р2O5+Н2O→2НРО3;
2НРО3 → Н2+1/2O2+Р2О5.
При постоянном расходе газа согласно закону Фарадея величина тока электролиза является мерой влагосодержания газа, т.е. кулонометрические приборы имеют расчетную шкалу при условии полного поглощения влаги в ячейке.
Известно, что фосфорный ангидрид с течением времени уносится анализируемым газом. При поглощении влаги вначале на входном участке фосфорный ангидрид переувлажняется и разжижается. При электролизе происходит образование мелких пузырьков, наполненных продуктами электролиза (кислородом и водородом). Пузырьки лопаются с образованием мельчайших брызг фосфорного ангидрида, которые переносятся анализируемым газом на следующие по пути газа витки. Предыдущие витки электродов рабочей части ячейки оголяются от пленки сорбента и перестают участвовать в электролизе.
Этот фронт активного электролиза движется от начала рабочей части до конца и переходит на контрольную часть ячейки, в которой появляется ток электролиза, что свидетельствует о выходе из строя ячейки. Ячейка требует регенерации. А т.к. количество регенераций ограничено из-за коррозии электродов и стекла, то срок службы ячейки тоже ограничен. Кроме того, перегрузка первых по пути газа витков электродов ограничивает верхний предел измерения влажности.
Сущность изобретения состоит в том, что кулонометрическая ячейка, состоящая из двух частей, рабочей и контрольной, расположенных во внутреннем канале стеклянного корпуса, трех проволочных платиновых или родиевых геликоидальных электродов, один из электродов является общим, а два других электрода расположены между витками общего с зазором между витками, пленки сорбента, покрывающей электроды и внутренний канал корпуса, и выводов, отличается от прототипа тем, что в предлагаемой ячейке поглощенная сорбентом влага более равномерно распределяется по длине рабочей части, благодаря чему отсутствуют большие электролизные перегрузки на входном участке, и повышается верхний предел измерения влаги. Это достигается тем, что зазор между электродами рабочей части ячейки имеет переменную величину и лежит в пределах от 0,8 до 0,1 мм. Максимальную величину зазор имеет в начале рабочей части ячейки, минимальную величину - в конце рабочей части, равномерно или ступенчато снижаясь от максимальной до минимальной.
На фиг.1 схематически изображена кулонометрическая ячейка, в которой величина зазора между электродами рабочей части равномерно снижается от максимальной величины а1 до минимальной аn. Такое устройство кулонометрической ячейки более предпочтительное, т.к. в нем влага более равномерно распределяется по длине рабочего участка. Но оно технологически трудно выполнимо.
На фиг.2 схематически изображена кулонометрическая ячейка, в которой величина зазора между электродами рабочей части ступенчато снижается от максимальной величины a1 до минимальной а2. Ступеней может быть две и более. На фиг.2 показаны две ступени и каждая ступень приблизительно равна половине рабочей части. Ступенчатое устройство менее предпочтительное. Но оно технологически более выполнимо.
Несоприкасающиеся геликоидально намотанные платиновые или родиевые электроды 1, 2 и 3 размещены на внутренней поверхности толстостенной стеклянной трубки 4 и частично в ней утоплены. Трубка 4 является одновременно и корпусом ячейки. Электрод 1 является общим и навит по геликоидальной линии но всей длине ячейки. Между витками общего электрода по геликоидальным линиям расположены электроды 2 и 3.
Участок между электродами 1 и 2 составляет рабочую часть ячейки, а участок между электродами 1 и 3 составляет контрольную часть. Слой 5 гигроскопического вещества наносится на внутреннюю часть трубки 4. Выводы 6, 7 и 8 соответственно электродов 1, 2 и 3 выполнены из того же материала, что и электроды, и в виде сферических тел ввариваются к наружной поверхности трубки 4.
При прохождении газа в направлении стрелки происходит поглощение влаги пленкой гигроскопического вещества. Т.к. зазор между электродами на первых витках рабочего участка больше, чем на последующих, значит, и омическое сопротивление больше с последующим понижением его к концу рабочего участка ячейки. Полный электролиз влаги происходит не на первых витках электрода, как это происходит в известной ячейке, а распределяется по длине рабочего участка.
При правильном подборе зазоров между электродами можно получить достаточно равномерный электролиз влаги по длине рабочего участка.
Благодаря этому увеличивается срок службы ячейки и увеличивается верхний предел измерения влаги в газах.
При ступенчатом распределении зазора между электродами также можно снизить электролизную нагрузку на электроды и увеличить предел измерения влаги в газах примерно во столько раз, сколько ступеней на рабочем участке ячейки.
название | год | авторы | номер документа |
---|---|---|---|
КУЛОНОМЕТРИЧЕСКАЯ ЯЧЕЙКА | 2022 |
|
RU2798329C1 |
СПОСОБ ВКЛЮЧЕНИЯ В РАБОТУ КУЛОНОМЕТРИЧЕСКОЙ ЯЧЕЙКИ | 2012 |
|
RU2498285C1 |
СПОСОБ СТАБИЛИЗАЦИИ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК КУЛОНОМЕТРИЧЕСКИХ ГИГРОМЕТРОВ | 2014 |
|
RU2572064C1 |
ГИГРОМЕТР | 2022 |
|
RU2798330C1 |
КУЛОНОМЕТРИЧЕСКАЯ ЯЧЕЙКА | 2022 |
|
RU2788669C1 |
СПОСОБ КОНТРОЛЯ ЗАПОЛНЕНИЯ СОРБЕНТОМ КУЛОНОМЕТРИЧЕСКОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА | 2012 |
|
RU2498288C2 |
КУЛОНОМЕТРИЧЕСКАЯ ЭЛЕКТРОЛИТИЧЕСКАЯ ЯЧЕЙКА | 2009 |
|
RU2488107C2 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ГАЗА | 2022 |
|
RU2808098C1 |
ГИГРОМЕТР | 2014 |
|
RU2587527C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВЛАГИ В ГАЗАХ | 1965 |
|
SU175681A1 |
Изобретение относится к области аналитического приборостроения и может быть использовано в гигрометрах. Сущность: кулонометрическая ячейка выполнена из двух частей, рабочей и контрольной, расположенных во внутреннем канале стеклянного корпуса, трех проволочных платиновых или родиевых геликоидальных электродов, один из электродов является общим, а два других электрода расположены между витками общего с рабочим зазором между витками. Зазор между электродами рабочей части ячейки является переменной величиной и лежит в пределах от 0,8 до 0,1 мм. Максимальную величину зазор имеет в начале рабочей части ячейки, минимальную - в конце, равномерно или ступенчато снижаясь от максимальной до минимальной. Технический результат изобретения заключается в увеличении срока службы ячейки и увеличении верхнего предела измерений влаги в газах. 2 ил.
Кулонометрическая ячейка, состоящая из двух частей, рабочей и контрольной, расположенных во внутреннем канале стеклянного корпуса, трех проволочных платиновых или родиевых геликоидальных электродов, один из электродов является общим, а два других электрода расположены между витками общего с зазором между витками, пленки сорбента, покрывающей электроды и внутренний канал корпуса, и выводов, отличающаяся тем, что зазор между витками рабочей части ячейки является переменной величиной и составляет 0,8-0,1 мм, при этом максимальную величину зазор имеет в начале рабочей части ячейки, минимальную величину - в конце, равномерно или ступенчато снижаясь от максимальной до минимальной.
Устройство для измерения относительной влажности газа | 1986 |
|
SU1357814A1 |
СПОСОБ КОНСЕРВИРОВАНИЯ ШКУР И ПУШНО-МЕХОВОГОСЫРЬЯ | 0 |
|
SU322369A1 |
US 4083765 А, 11.04.1978 | |||
US 4210508 А, 01.07.1980. |
Авторы
Даты
2004-05-10—Публикация
2003-05-19—Подача