СИСТЕМА ПОЖАРОТУШЕНИЯ Российский патент 2004 года по МПК A62C3/08 

Описание патента на изобретение RU2229911C2

Изобретение относится к противопожарной технике, а именно к системам тушения пожара вентилируемых отсеков или помещений с установленными в них энергоустановками (ЭУ) – двигателями внутреннего сгорания, газовыми турбинами, электрическими двигателями, трансформаторами и др. тепловыделяющими агрегатами. В качестве огнетушащих веществ могут быть использованы подаваемые под избыточным давлением хладоны, газовые смеси, порошки и огнетушащие аэрозоли, вырабатываемые при горении аэрозольных составов.

Известна система пожаротушения силовой установки летательного аппарата, содержащая распылительный коллектор, подключенный трубопроводом к источнику огнетушащего вещества (ОВ), связанному с датчиком сигнализации о пожаре, вентиляционный воздухозаборник с установленным в нем перекрывающим устройством в виде механической заслонки, приводимой в действие подпружиненным поршневым приводом, полость которого соединена с трубопроводом [1]. При подаче ОВ в отсек силовой установки обеспечивается автоматическое перекрытие проходного сечения воздухозаборника с помощью сжатого газа или ОВ. Сокращение поступающего в зону горения воздуха препятствует дальнейшему распространению очага пламени, уменьшает потери ОВ с выдуваемыми газами и существенно уменьшает потребную концентрацию ОВ для подавления пожара.

К основным недостаткам этого решения относятся сложность конструкции и значительная масса для крупногабаритных ЭУ летательных аппаратов с большими проходными, например кольцевыми, сечениями воздухозаборников и ограниченная располагаемая мощность газообразных (углекислотных, хладоновых или азотных) ОВ.

Известны системы пожаротушения силовой установки летательного аппарата, содержащие источник жидкого ингибирующего ОВ с пусковой аппаратурой и узлами подачи ОВ в воздуховоды, имеющими форму полукольцевого коллектора с форсунками, обращенными во внутреннюю часть плоскости проходного сечения радиального воздуховода [2] или трубопровода с форсункой, ориентированной в воздуховоде навстречу набегающему потоку [3]. При пожаре истекающие из форсунок поперек или навстречу потоку воздуха струи ОВ обеспечивают высокое качество перемешивания и ингибирования вентиляционного воздуха, но существенно не снижают количество его поступления в защищаемый отсек. Кроме этого, при возникновении пожара в отсеке при отсутствии вентиляции или ее недостаточности, в частности, на режиме запуска ЭУ, поступающего с вентиляционным воздухом ОВ может оказаться недостаточно для тушения пожара.

Известен также способ тушения пожара ЭУ, размещенной в продуваемой потоком воздуха проточной полости кожуха, включающий подачу в полость кожуха струи (струй) ОВ с одновременным уменьшением поступления воздуха в полость кожуха за счет силового воздействия струи (струй) ОВ на поток воздуха и соответствующего увеличения аэродинамического сопротивления проточной полости отсека. Сопло (сопла) в реализующем способ устройстве может быть установлено по отношению к направлению движения воздуха тангенциально, или перпендикулярно, или встречно [4]. Проведенными стендовыми испытаниями по тушению пожаров на мотоотсеке самолета ТУ-204 подтверждена высокая эффективность решения с ОВ на основе огнетушащих аэрозольных составов, однако высокие рабочие температуры, плотная компоновка агрегатов в отсеках ЭУ высокоскоростных летательных аппаратов и жесткие массовые ограничения делают проблематичным прямое использование в них известного решения.

Целью изобретения является повышение эффективности системы пожаротушения за счет использования для запирания потока воздуха в воздуховоде силового воздействия струи (струй) ОВ.

Поставленная цель в системе пожаротушения вентилируемого отсека, преимущественно, силовой установки летательного аппарата, содержащая датчик обнаружения пожара, устройство задействования, источник ОВ на одну или несколько очередей пожаротушения и узел ввода огнетушащего вещества в вентиляционный канал, соединяющий отсек с атмосферой, достигается тем, что узел ввода выполнен в виде сопла или группы сопел, установленных преимущественно тангенциально к оси канала.

Для силового воздействия струи ОВ, способной осуществить запирающее действие (газовую завесу) потоку воздуха, достаточно, чтобы полное давление струи не менее чем в 2-3 раза превышало давление торможения потока воздуха, а эффективность воздействия существенным образом зависит от геометрии проточной полости кожуха и организации процесса взаимодействия.

Тангенциальный вдув струи ОВ в цилиндрический воздуховод закручивает в нем поток воздуха, а образующаяся центробежная сила создает радиальный градиент давления в полости – динамическую газовую "пробку", уменьшающую поступление воздуха в отсек. В зависимости от соотношения полных давлений закрученной смеси и воздуха в воздуховоде реализуются следующие режимы: подача в отсек ингибированной смеси "воздух-ОВ" различной концентрации; полное запирание воздуховода (для воздуха), включая режим с выбросом части ОВ в атмосферу через воздухозаборник. При этом на любом из режимов ОВ поступает в защищаемый отсек.

Усовершенствования устройства касаются вариантов выполнения узла ввода ОВ.

Предлагается узел ввода выполнять в виде вихревого клапана, обеспечивающим наиболее энергетически эффективное запирание осевого потока воздуха. По данным [5] экспериментальные расходные характеристики одного из испытанных клапанов при постоянном давлении на входе показали возможность практически полного запирания потока входящего газа при давлении активного газа 1.3 и массе 0.25 от давления и массы входящего газа соответственно.

Поскольку кольцевые проточные полости воздуховода характерны лишь для ограниченного типа ЗУ–газовых турбин, реактивных, турбореактивных и турбовентиляторных двигателей летательных аппаратов, - а установка центрального тела вихревого клапана в цилиндрический воздуховод увеличивает его гидравлическое сопротивление, габариты и массу, то для значительного числа ЭУ с воздуховодами функцию запорного устройства предлагается реализовать, выполнив узел ввода в виде вихревого эжектора. Ориентация напорной и нагнетательной сторон эжектора осуществляется в зависимости от функции воздуховода: нагнетательной или отсасывающей.

На критическом режиме работы эжектора воздуховод "запирается", а на расчетном – подает в отсек газовую смесь "воздух–ОВ" требуемой концентрации и/или, при использовании в качестве ОВ высокотемпературного аэрозоля, - заданной температуры.

Предлагается воздуховод и/или канал подачи огнетушащего вещества или их внутренние облицовки выполнять электроизолированными и соединять с источником высокого напряжения.

Такое решение обеспечивает существенное уменьшение осаждения на стенки подводящего канала порошкообразного или аэрозольного ОВ и повышает эффективность пожаротушения за счет электростатического взаимодействия между частицами ОВ и факелом пожара.

Систему пожаротушения, преимущественно ЭУ летательного аппарата военного назначения, предложено дополнять датчиком аварийного задействования, функции которого могут выполнять, например, радиолокатор заднего обзора и бортовой вычислительный комплекс, выдающий команду на задействование системы пожаротушения за 0.5...1 секунду до возможного попадания ракеты (снаряда) в аппарат. Такое исполнение позволяет повысить живучесть аппарата за счет исключения развития пожара в отсеке ЭУ при попадании ракеты (снаряда). Кроме этого, экранирование слоем вентиляционного воздуха с аэрозольными частицами (при использовании ОВ на основе аэрозольных составов), эжектируемым реактивной струей ЭУ, ослабляет ИК-излучение сопла и истекающей струи продуктов сгорания ЭУ, что увеличивает вероятность промаха ракеты (снаряда) с ИК-головкой наведения.

Аварийное задействование системы пожаротушения может быть предусмотрено при нештатной (аварийной) посадке летательного аппарата, например при ударе выше допустимого уровня.

Система пожаротушения в этом случае комплектуется источником ОВ с несколькими очередями пожаротушения, запускаемыми по команде от бортовой ЭВМ при поступлении сигналов от датчиков обнаружения пожара или аварийного задействования.

Сущность изобретения поясняется на чертежах, на которых схематически показаны:

на фиг.1 – общий вид системы пожаротушения в составе турбореактивной ЭУ летательного аппарата;

на фиг.2 – выносной элемент А на фиг.1 (узел ввода ОВ в виде вихревого клапана);

на фиг.3 – выносной элемент А (вариант выполнения узла ввода ОВ в виде вихревого эжектора и источника ОВ с несколькими очередями пожаротушения).

Приведенный на фиг.1 летательный аппарат 1 содержит ЭУ 2, размещенную в вентилируемом отсеке 3. Наружный воздух подается в отсек 3 по вентиляционному каналу 4, а отсасывается истекающей из сопла 5 ЭУ 2 струей продуктов сгорания через кольцевую щель 6. Источником ОВ является генератор аэрозоля 7 многократного запуска с аэрозольным зарядом 8 (см. фиг.2), состоящего из набора отдельных зарядов с индивидуальными воспламенителями 9, разделенными друг от друга термостойкими мембранами 10. Узел ввода 11 может быть выполнен как в виде сопла 12, установленного тангенциально к оси канала 4, так и в виде газодинамических устройств, усиливающих эффект запирания канала – вихревого клапана 13 с закрепленным на пилонах центральным телом 14, или вихревого эжектора 15, показанным на фиг.2 и 3 соответственно. Корпус вентиляционного канала 4 и генератора аэрозоля 7 электроизолированы от летательного аппарата 1 с помощью электроизоляционных прокладок 16 и соединены с источником высокого напряжения (на чертежах не показан) клеммой 17.

Работа системы. При возникновении пожара в отсеке ЭУ или приближении ракеты, по сигналу от соответствующего датчика, устройство задействования (не показанных на чертежах) выдает электрический сигнал на воспламенитель 9 заряда 8 первой очереди и подает на клемму 17 высокое напряжение. Истекающие из сопла 12 высоконапорные струи ОВ закручивают поток воздуха в проточной части канала 8, резко увеличивая его аэродинамическое сопротивление входящему потоку воздуха и уменьшая его поступление в отсек 3. Ингибированная при интенсивном перемешивании с ОВ воздушная смесь заполняет объем отсека 3 и прекращает горение в очаге пожара. Имеющие одинаковый электрический потенциал частицы аэрозоля и стенки канала 4 препятствуют осаждению частиц в канале, но интенсивнее поступают в зону очага горения и прилегающие элементы конструкции за счет электростатического взаимодействия разноименных зарядов. При выходе через кольцевую щель 6 аэрозольная струя, имеющая существенно более низкую температуру по сравнению с продуктами сгорания ЭУ 2, экранирует нагретые стенки сопла 5 и примыкающий к срезу сопла участок струи ЭУ, ослабляя ИК-излучение.

При повторном воспламенении ЭУ по аналогичной схеме воздействуется воспламенитель 9 и заряд 8 второй очереди.

Источники информации

1. Авт.св. СССР №1656719, МПК А 62 С 3/08.

2. Авт.св. СССР №629662, МПК А 62 С 35/00; В 64 D 45/00.

3. Авт.св. СССР №858220, МПК А 62 С 3/00.

4. Патент РФ №2090226, МПК А 62 С 2/00.

5. А.А. Шишков, Б.В. Румянцев. Газогенераторы ракетных систем. М.: Машиностроение. – 1981, стр.95.

Похожие патенты RU2229911C2

название год авторы номер документа
СПОСОБ ТУШЕНИЯ ПОЖАРА ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Казанцев И.Л.
  • Казанцев Л.В.
RU2090226C1
ЛИНЕЙНЫЙ ОГНЕТУШИТЕЛЬ 1993
RU2101058C1
Способ комбинированного пожаротушения, устройство для его реализации 2017
  • Забегаев Владимир Иванович
RU2645207C1
СПОСОБ ПОЖАРОТУШЕНИЯ (ЕГО ВАРИАНТ), УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ЕГО ВАРИАНТЫ) И СИСТЕМА ПОЖАРОТУШЕНИЯ 1997
  • Жегров Е.Ф.
  • Дороничев А.И.
  • Милехин Ю.М.
RU2118551C1
СИСТЕМА МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ КОЧЕТОВА 2015
  • Кочетов Олег Савельевич
RU2577654C1
СПОСОБ МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ КОЧЕТОВА 2015
  • Кочетов Олег Савельевич
RU2597632C1
АВТОМАТИЧЕСКАЯ СИСТЕМА ПОЖАРОТУШЕНИЯ 2008
  • Дубрава Олег Леонидович
  • Логинов Юрий Иванович
  • Бартош Виктор Викторович
  • Сидоров Виктор Степанович
  • Воробьев Сергей Николаевич
RU2368409C1
СПОСОБ ПОЛУЧЕНИЯ ОГНЕТУШАЩЕЙ СМЕСИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Тарадайко В.П.
  • Бор А.М.
  • Надубов Владимир Александрович
RU2176925C1
УСТАНОВКА МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ 2011
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2474447C1
УСТРОЙСТВО ДЛЯ ОБЪЕМНОГО ПОЖАРОТУШЕНИЯ 1996
RU2097079C1

Иллюстрации к изобретению RU 2 229 911 C2

Реферат патента 2004 года СИСТЕМА ПОЖАРОТУШЕНИЯ

Изобретение относится к противопожарной технике, а именно к системам тушения пожара вентилируемых отсеков, преимущественно, летательных аппаратов. Система содержит датчик обнаружения пожара, устройство задействования, источник огнетушащего вещества на одну или несколько очередей пожаротушения и узел ввода огнетушащего вещества в вентиляционный канал, соединяющий отсек с атмосферой. Предложено выполнять узел ввода в виде сопла или группы сопел, установленных преимущественно тангенциально к оси канала, что обеспечивает надежное газодинамическое перекрытие воздуховода при подаче задействовании системы. Усовершенствования касаются форм выполнения узла ввода - в виде вихревого клапана, вихревого эжектора, - соединения его с источником высокого напряжения, а также введением в систему дополнительного датчика аварийного задействования, что повышает эффективность пожаротушения и живучесть летательного аппарата при возникновении аварийных ситуаций. 4 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 229 911 C2

1. Система пожаротушения вентилируемого отсека, содержащая датчик обнаружения пожара, устройство задействования, источник огнетушащего вещества на одну или несколько очередей пожаротушения и узел ввода огнетушащего вещества в вентиляционный канал, соединяющий отсек с атмосферой, отличающаяся тем, что узел ввода выполнен в виде сопла или группы сопел, установленных преимущественно тангенциально к оси канала.2. Система по п.1, отличающаяся тем, что узел ввода содержит вихревой клапан.3. Система по п.1, отличающаяся тем, что узел ввода содержит вихревой эжектор.4. Система по п.1, отличающаяся тем, что вентиляционный, и/или канал подачи огнетушащего вещества, или их внутренние облицовки выполнены электроизолированными и соединены с источником высокого напряжения.5. Система по п.1, отличающаяся тем, что она дополнена датчиком аварийного задействования, например, при подлете ракеты (снаряда).

Документы, цитированные в отчете о поиске Патент 2004 года RU2229911C2

СПОСОБ ТУШЕНИЯ ПОЖАРА ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Казанцев И.Л.
  • Казанцев Л.В.
RU2090226C1
US 4351394 A
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1
SU 629662 A1, 10.04.1996
СПОСОБ ПРОВЕРКИ ФУНКЦИОНАЛЬНОСТИ КЛАПАНА РЕЦИРКУЛЯЦИИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2011
  • Томас Брайтбах
  • Йенс Павлак
RU2560091C2
ИСКРОВОЙ РАЗРЯДНИК БЕЗ ВРАЩАТЕЛЬНОЙ СИММЕТРИИ, В ЧАСТНОСТИ РОГОВОЙ ИСКРОВОЙ РАЗРЯДНИК С ДУГОГАСИТЕЛЬНОЙ КАМЕРОЙ 2019
  • Штрангфельд, Уве
  • Хирль, Штефан
  • Шён, Штефан
RU2759802C1
DE 4310707 А, 06.10.1994
КОМПОНОВКА ВЕРХНЕЙ ЧАСТИ КАБИНЫ ЛЕТАТЕЛЬНОГО АППАРАТА 2005
  • Сэн-Жальм Брюно
  • Резаг Андре
  • Занебони Жазон
RU2385825C2

RU 2 229 911 C2

Даты

2004-06-10Публикация

2001-04-05Подача