УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ КАПИЛЛЯРНОГО КРОВОТОКА Российский патент 2004 года по МПК A61B5/26 

Описание патента на изобретение RU2231286C1

Изобретение относится к медицинской измерительной технике и может быть использовано для контроля кровотока в капиллярах поверхностностных тканей человека и подопытных животных.

Известно устройство для измерения скорости капиллярного кровотока (Siavash Y. et al. Diagnostic blood flow monitoring during therapeutic interventions using color Doppler optical coherence tomography. Proc. SPIE. Vol 3251. P 126-132), представляющее собой волоконный интерферометр Майкельсона, в котором опорный отражатель установлен на модуляторе оптического пути, снабженном системой измерения его перемещения. За выходным окном интерферометра расположен фотоприемник. Фотоприемник электрически связан с блоком обработки сигнала. В устройстве анализируется спектр отраженного от контролируемого объекта излучения. Величина кровотока определяется по допплеровскому смещению частоты, наложенному на постоянный допплеровский сдвиг, обусловленный модуляцией в опорном плече интерферометра. К недостаткам устройства следует отнести сложность изготовления узла сканирования опорного отражателя.

Известно устройство для измерения скорости капиллярного кровотока (Uly-anov S.S., Tuchin V.V. Partially developed speckle-field dynamics for blood microcirculation and biovibration parameters measurement. Proc. SPIE. V.1922. P. 284), включающий последовательно установленные на его оптической оси блок освещения, состоящий из источника низкокогерентного излучения и объектива, плоский светоделитель, ориентированный под углом 45° к оптической оси, плоскопараллельную пластину, расположенную в плоскости размещения объекта, установленный по ходу отраженного от плоского светоделителя луча плоский отражатель, причем плоский отражатель расположен в плоскости, оптически сопряженной со светящимся телом источника когерентного излучения, установленный по ходу отраженного от плоского отражателя и прошедшего плоский светоделитель луча фотоприемник, полосовой усилитель и измеритель мощности, причем выход полосового усилителя подключен к входу измерителя мощности. Данное устройство принято за прототип.

Основным недостатком прототипа является низкая скорость измерения. Действительно, полезная информация содержится в допплеровской составляющей спектра отраженного от объекта излучения (Siavash Y. et al. Diagnostic blood flow monitoring during therapeutic interventions using color Doppler optical coherence tomography. Proc. SPIE. Vol. 3251. P 126-132):

где fb - сдвиг частоты излучения, отраженного от движущейся со скоростью V крови;

θ - угол между падающим излучением и вектором скорости крови;

λ0 - длина волны излучения источника.

Наличие допплеровского смещения частоты приводит к временной модуляции интенсивности выходного интерференционного сигнала, который имеет вид

где I0=<E0E0*>

Ip=<EpEp*>

I0, Iр - интенсивности опорного и объектного световых пучков соответственно;

E0, Ер - амплитуды опорной и объектной волн соответственно,

<...> - операция усреднения по времени,

ϕ - начальный фазовый сдвиг между интерферирующими лучами;

t - время.

Детектирование интерференционного сигнала производится фотоприемником.

Однако при измерениях сканирование по поверхности объекта сопровождается временной модуляцией интенсивности отраженного излучения 1р, обусловленной шероховатостью поверхности кожи, что приводит к дополнительной модуляции спектра отраженного сигнала.

Положим, что диаметр зондирующего пятна на поверхности объекта равен 20 мкм. Спектр-структура отраженного света полностью теряет корреляцию при смещении зондирующего пятна на 1/10 его диаметра, что равно 2 мкм (Parks V.J. The range of spekle metrology // Exp.Mech. 1980. V.20. №6. P.181). Поэтому при скорости сканирования пятна Vск=1 мм/с характерная частота модуляции fм интенсивности отраженного света будет равна

Скорость движения крови в капиллярах V=0-1,5 мм/с (К.Каро. Механика кровообращения. М.: Мир. 1981. С.473), т.е. Vcp=0,75 мм/с. При длине волны зондирующего излучения 0,83 мкм средняя величина допплеровского смещения частоты в соответствии с формулой (1) будет равна (при cos θ=1)

При увеличении скорости сканирования (Vck=2мм/с) паразитный частотный сдвиг перекрывает допплеровское смещение частоты, несущее полезную информацию. Поскольку интенсивность излучения, отраженного от поверхности кожи на несколько порядков, превышает интенсивность излучения, рассеянного частицами движущейся крови (Геликонов В.М. и др. Когерентная оптическая томография микронеоднородностей биотканей. Письма вЖЭТФ. 1995. Т.61. В.2. С 149-153), проведение измерений становится невозможным.

Задачей изобретения является уменьшение времени измерения кровотока. Поставленная задача решается тем, что устройство для измерения скорости капиллярного кровотока, содержащее двухлучевой интерферометр, включающий последовательно установленные на его оптической оси блок освещения, состоящий из источника низкокогерентного излучения и объектива, плоский све-тоделитель, ориентированный под углом 45° к оптической оси интерферометра, плоскопараллельную пластину, расположенную в плоскости размещения объекта измерения, плоский отражатель, установленный по ходу отраженного от плоского светоделителя луча и расположенный в плоскости, оптически сопряженной со светящимся телом источника низкокогерентного излучения, фотоприемник, установленный по ходу отраженного от плоского отражателя и прошедшего плоский светоделитель луча, полосовой усилитель и измеритель мощности, причем выход полосового усилителя подключен к входу измерителя мощности, согласно изобретению дополнительно снабжено вторым фотоприемником, установленным по ходу отраженного от объекта измерения и прошедшего плоский светоделитель луча, и схемой вычитания, входы которой подключены к выходам фотоприемников, а выход - к входу полосового усилителя, причем первый и второй фотоприемники установлены симметрично относительно плоского светоделителя, а блок освещения отклонен от оптической оси на угол α, определяемый из равенства

s/2=d·tgα,

где s - линейный размер блока освещения, определяемый в направлении, перпендикулярном направлению излучения, d - расстояние от блока освещения до плоскопараллельной пластины.

Необходимый технический результат достигается тем, что в заявляемом устройстве в выходном сигнале устраняются компоненты, содержащие паразитную модуляцию спектра.

На фиг.1 изображена схема устройства; на фиг.2 - схема интерференции лучей опорного и объектного световых пучков после прохождения светоделителя.

Устройство для измерения скорости капиллярного кровотока содержит блок освещения 1, состоящий из источника низкокогерентного освещения 2 и объектива 3, плоский светоделитель 4, ориентированный под углом 45° к оптической оси ОО’ интерферометра, плоскопараллельную пластину 5, расположенную в плоскости размещения объекта измерения, плоский отражатель 6, установленный по ходу отраженного от плоского светоделителя 4 луча и расположенный в плоскости, оптически сопряженной со светящимся телом источника низкокогерентного излучения 2, первый фотоприемник 7, установленный по ходу отраженного от плоского отражателя 6 и прошедшего плоский светоделитель 4 луча, второй фотоприемник 8, установленный по ходу отраженного от объекта измерения и прошедшего плоский светоделитель 4 луча, схему вычитания 9, входы которой подключены к выходам фотоприемников 7 и 8, полосовой усилитель 10, измеритель мощности 11 и компенсатор разности хода 12, установленный между плоским светоделителем 4 и плоским отражателем 6. Вход полосового усилителя 10 подключен к выходу схемы вычитания 9, а выход - к входу измерителя мощности 11. Первый 7 и второй 8 фотоприемники установлены симметрично относительно плоского светоделителя 4. Блок освещения 1 отклонен от оптической оси ОО’ интерферометра на угол α, определяемый из равенства

s/2=d·tgα,

где s - линейный размер блока освещения 1, определяемый в направлении, перпендикулярном направлению излучения, d - расстояние от блока освещения 1 до плоскопараллельной пластины 5.

Устройство работает следующим образом. Излучение источника 2 (фиг.1) с помощью объектива 3 фокусируется на поверхность плоскопараллельной пластины 5. В процессе измерений поверхность контролируемого объекта совмещается с плоскостью плоскопараллельной пластины 5. Поэтому фокусировка излучения на плоскопараллельную пластину является фокусировкой и на поверхность объекта. Фокусировка обеспечивает локальность контроля кровотока.

Плоский светоделитель 4 отклоняет часть излучения от низкокогерентного источника 2 на плоский отражатель 6 (плоское зеркало) и, таким образом, формирует опорный световой пучок. Излучение, рассеянное объектом, распространяется по двум направлениям:

- излучение, отраженное от плоского светоделителя 4, распространяется в направлении первого фотоприемника 7;

- излучение, прямопрошедшее плоский светоделитель 4, - в направлении второго фотоприемника 8.

Опорное излучение после отражения от плоского отражателя 6 также попадает на два фотоприемника - 7 и 8. Фотоприемники регистрируют результат интерференции объектного и опорного световых пучков.

Рассмотрим уравнение интерференции (2). Представим световую волну Ер, отраженную от объекта в виде суммы волны Еb, несущей полезную информацию, и паразитного сигнала Es (света, отраженного от поверхности кожи). Тогда уравнение (2) можно представить в следующем виде:

где Is=<EsEs*> - интенсивность паразитного сигнала,

Ib=<EbEb*> - интенсивность полезного сигнала.

В уравнении (3) отсутствуют перекрестные члены, обусловленные взаимодействием волн Е0 и Es, Es и Еb. Контроль кровотока производится на глубине h от поверхности объекта, которая превышает длину когерентности источника излучения. Поэтому для указанных пар волн не будет выполняться условие интерференции, и члены <EоEs*> и <EsЕb*> после операции усреднения дают нули.

Поясним физическую сущность достигаемого технического результата на примере интерференции лучей опорного и объектного световых пучков после прохождения одной из светоделительных поверхностей плоского светоделителя 4. На фиг.2 изображен фрагмент плоского светоделителя, где

7, 8 - фотоприемники;

a, b - падающие на светоделитель опорный и объектный лучи соответственно;

a7, b7 - выходные лучи опорного и объектного световых пучков соответственно, распространяющиеся в направлении фотоприемника 7;

a8, b8 - выходные лучи опорного и объектного световых пучков соответственно, распространяющиеся в направлении фотоприемника 8;

n - показатель преломления материала светоделителя (n>1).

Положим, что разность фаз между опорным а и объектным b лучами в точке М равна ϕ. После прохождения светоделителя фаза луча b в точке М испытает скачок на тт в соответствии с законом отражения от оптически более плотной среды (Г.С.Лансберг. Оптика. "Наука". М.: 1976. С.475).

Тогда в результате интерференции лучей (а7, b7) и (а8, b8) интенсивность световых потоков, регистрируемых фотоприемниками, будет определяться следующими выражениями.

Фотоприемник 7:

Фотоприемник 8:

Выходные сигналы фотоприемников U7 и U8 пропорциональны интенсивностям световых потоков I7 и I8. Поэтому, опуская коэффициент преобразования световых потоков в электрический сигнал, можно записать: U7=I7 и U8=I8. В схеме вычитания 9 (фиг.1) производится вычитание выходных сигналов фотоприемников U7 и U8. В итоге компоненты сигналов, содержащие паразитную модуляцию спектра, устраняются, и остается только один интерференционный член:

Спектральный состав выходного сигнала U в соответствии с (6) определяется распределением микропотоков крови по скоростям, а также пространственной ориентацией векторов их скоростей. Нижняя и верхняя границы полосы пропускания усилителя 10 (фиг.1) определяют полосу анализа скоростей кровотока. Практически границы устанавливаются равными соответственно 300 Гц и 1500 Гц. Интегральная величина кровотока определятся по показаниям измерителя мощности 11.

Практически для реализации рассмотренного устройства в качестве источника низкокогерентного излучения 2 (фиг.1) может быть использован суперлюминесцентный диод с длиной волны 0,83 мкм и длиной когерентности 30 мкм. Низкая длина когерентности источника излучения позволяет производить локальный контроль кровотока по глубине объекта. При этом пространственная разрешающая способность по глубине совпадает, очевидно, с длиной когерентности (~30 мкм). Практически для задания необходимой глубины анализа кровотока может быть использована плоскопараллельная пластина-компенсатор 12, помещенная в опорное плечо интерферометра. Толщина компенсатора определяет положение нулевой разности хода интерферирующих световых пучков. Поэтому, изменяя толщину компенсатора соответствующим образом, можно варьировать желаемую глубину измерения кровотока. Максимальная глубина анализа кровотока определяется степенью превышения уровня полезного сигнала над уровнем шумов, т.е. - отношением сигнал/шум. Современная элементная база позволяет контролировать кровоток на глубине до 1,5 мм.

Указанное отклонение блока освещения от оптической оси на угол α продиктовано необходимостью симметричной установки двух фотоприемников относительно светоделителя. В устройстве используется светоделитель, делящий падающее излучение на отраженное и прямопрошедшее в соотношении 1:1. Требование к симметрии установки фотоприемников необходимо для идентичности анализируемых световых потоков. В заявляемом устройстве источник низкокогерентного излучения установлен с возможностью перемещения перпендикулярно направлению излучения. Перемещение источника обеспечивает смещение (сканирование) зондируещего светового пятна по поверхности объекта.

Как следует из выражения (6), выходной сигнал не содержит членов с паразитной модуляцией спектра. Поэтому наличие последней в отраженном от объекта излучении не является препятствием для увеличения скорости сканирования поверхности контролируемого объекта.

Таким образом, на основании вышеизложенного, заявляемая совокупность признаков в устройстве позволяет решить поставленную задачу, а именно: уменьшить время измерения скорости кровотока.

Похожие патенты RU2231286C1

название год авторы номер документа
ОПТИКО-МЕХАНИЧЕСКИЙ ИЗМЕРИТЕЛЬ ДАВЛЕНИЯ 1999
  • Долгих Г.И.
  • Батюшин Г.Н.
RU2159925C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОРОТКИХ ДИСТАНЦИЙ ДО ДИФФУЗНО-ОТРАЖАЮЩИХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Хопов Владимир Викторович[Ru]
RU2092787C1
Устройство для измерения амплитуды колебаний объектов 1986
  • Ильянков Александр Иосифович
  • Васильев Виктор Семенович
  • Тихомиров Владимир Владимирович
SU1374060A1
ИНТЕРФЕРОМЕТР ДЛЯ ИЗМЕРЕНИЯ ПЕРЕМЕЩЕНИЙ 1997
  • Долгих Г.И.
  • Корень И.А.
RU2146354C1
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОРЕЛЬЕФА ОБЪЕКТА И ОПТИЧЕСКИХ СВОЙСТВ ПРИПОВЕРХНОСТНОГО СЛОЯ, МОДУЛЯЦИОННЫЙ ИНТЕРФЕРЕНЦИОННЫЙ МИКРОСКОП ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2001
  • Андреев В.А.
  • Индукаев К.В.
  • Осипов П.А.
RU2181498C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ИНТЕРФЕРЕНЦИОННЫЙ ДАТЧИК ТЕМПЕРАТУРЫ 2011
  • Тертышник Анатолий Данилович
  • Волков Петр Витальевич
  • Горюнов Александр Владимирович
  • Лукьянов Андрей Юрьевич
RU2466366C1
ИНТЕРФЕРОМЕТРИЧЕСКОЕ ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО (ВАРИАНТЫ) 2005
  • Волков Петр Витальевич
  • Горюнов Александр Владимирович
  • Тертышник Анатолий Данилович
RU2307318C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОБРАЖЕНИЙ ВНУТРЕННЕЙ СТРУКТУРЫ ОБЪЕКТОВ 2000
  • Мазуренко Ю.Т.
  • Папаян Г.В.
RU2184347C2
Устройство для определения поперечных смещений объекта 1991
  • Зацаринный Анатолий Васильевич
  • Терехов Сергей Петрович
  • Точилин Константин Эдуардович
SU1793205A1
УСТРОЙСТВО КОНТРОЛЯ ПОЛОЖЕНИЯ ОБЪЕКТА НАНО- И СУБНАНОМЕТРОВОЙ ТОЧНОСТИ 2012
  • Кожеватов Илья Емельянович
  • Куликова Елена Хусаиновна
  • Руденчик Евгений Антонович
  • Черагин Николай Петрович
RU2502951C1

Иллюстрации к изобретению RU 2 231 286 C1

Реферат патента 2004 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ КАПИЛЛЯРНОГО КРОВОТОКА

Изобретение относится к медицинской измерительной технике и может быть использовано для контроля кровотока в капиллярах поверхностных тканей человека и подопытных животных. Устройство содержит двухлучевой интерферометр, включающий последовательно установленные на его оптической оси блок освещения, состоящий из источника низкокогерентного излучения и объектива, плоский светоделитель, ориентированный под углом 45° к оптической оси интерферометра, плоскопараллельную пластину, расположенную в плоскости размещения объекта измерения, плоский отражатель, установленный по ходу отраженного от плоского светоделителя луча и расположенный в плоскости, оптически сопряженной со светящимся телом источника низкокогерентного излучения, первый фотоприемник, установленный по ходу отраженного от плоского отражателя и прошедшего плоский светоделитель луча, и второй фотоприемник. Последний установлен по ходу отраженного от объекта измерения и прошедшего плоский светоделитель луча. Фотоприемники установлены симметрично относительно плоского светоделителя. Их выходы подключены к входам схемы вычитания, выход которой подключен к входу полосового усилителя и через него к измерителю мощности. Блок освещения отклонен от оптической оси на угол α, определяемый из равенства s/2=d·tgα, где s - линейный размер блока освещения, определяемый в направлении, перпендикулярном направлению излучения, d - расстояние от блока освещения до плоскопараллельной пластины. Устройство обеспечивает уменьшение времени измерения кровотока. 2 ил.

Формула изобретения RU 2 231 286 C1

Устройство для измерения скорости капиллярного кровотока, содержащее двухлучевой интерферометр, включающий последовательно установленные на его оптической оси блок освещения, состоящий из источника низкокогерентного излучения и объектива, плоский светоделитель, ориентированный под углом 45° к оптической оси интерферометра, плоскопараллельную пластину, расположенную в плоскости размещения объекта измерения, плоский отражатель, установленный по ходу отраженного от плоского светоделителя луча и расположенный в плоскости, оптически сопряженной со светящимся телом источника низкокогерентного излучения, фотоприемник, установленный по ходу отраженного от плоского отражателя и прошедшего плоский светоделитель луча, полосовой усилитель и измеритель мощности, причем выход полосового усилителя подключен к входу измерителя мощности, отличающееся тем, что оно дополнительно снабжено вторым фотоприемником, установленным по ходу отраженного от объекта измерения и прошедшего плоский светоделитель луча, и схемой вычитания, входы которой подключены к выходам фотоприемников, а выход - к входу полосового усилителя, причем первый и второй фотоприемники установлены симметрично относительно плоского светоделителя, а блок освещения отклонен от оптической оси на угол α, определяемый из равенства s/2=dtgα, где s - линейный размер блока освещения, определяемый в направлении, перпендикулярном направлению излучения, d - расстояние от блока освещения до плоскопараллельной пластины.

Документы, цитированные в отчете о поиске Патент 2004 года RU2231286C1

ULYANOV S.S
et all
Partially developed Speckle-field dynamics for blood microcirculation and biovibration parameters measurement
Водоподъемное устройство 1924
  • Буланов М.Л.
SU1922A1
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ КАПИЛЛЯРНОГО КРОВОТОКА 1998
RU2160041C2
Способ определения кровенаполнения сосудов и устройство для его реализации 1989
  • Наумович Александр Семенович
  • Бойко Сергей Григорьевич
  • Золотой Сергей Анатольевич
  • Сидорик Павел Иосифович
SU1777077A1
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ БИОЛОГИЧЕСКОЙ ТКАНИ И ФОТОПЛЕТИЗМОГРАФ 1991
  • Александров М.Т.
  • Осипов В.К.
  • Герасимов И.М.
  • Здобников А.Е.
  • Савостин П.И.
  • Андреев Е.М.
  • Кравченко Е.В.
  • Чекмарев В.М.
RU2032376C1
US 4596254 А, 24.06.1986.

RU 2 231 286 C1

Авторы

Большаков О.П.

Котов И.Р.

Хопов В.В.

Даты

2004-06-27Публикация

2002-12-18Подача