Изобретение относится к геофизикe и может быть использовано для измерения микродеформаций земной коры и изучения пространственно-временной структуры сейсмоакустических полей широкого диапазона частот (0-103 Гц).
Известен интерферометр для измерения перемещений, содержащий последовательно установленные одночастотный лазер, телескопическую систему, светоделитель и два уголковых отражателя, один из которых предназначен для связи с объектом, а другой расположен в опорном плече интерферометра, четвертьволновую пластину, размещенную между первым отражателем и светоделителем, и последовательно установленные по ходу излучения два поляризатора, оптически связанные со светоделителем, и фотоэлектрическую систему обработки квадратурных интерференциальных сигналов [патент РФ N 2025655, кл. G 01 B 9/02].
Известен также интерферометр фазового сдвига [а.с. N 1816313, кл. G 01 B 9/02] для контроля формы поверхности оптических элементов и качества оптических систем, содержащий последовательно установленные источник монохроматического излучения, расширитель пучка излучения и светоделитель, предназначенный для формирования опорного и измерительного пучков излучения, эталонный отражатель и матричный фотоприемник с системой обработки информации, установленные в ходе опорного пучка излучения, матричный фотоприемник с системой обработки информации, установленный в ходе совмещения пучков излучения, и средство для измерения оптической разности хода между опорным и измерительным пучками излучения.
Недостатком известных устройств является то, что из-за использования в опорном плече интерферометра уголкового отражателя, в системе регистрации применяют следящее устройство отслеживания смещения интерференционных полос, что ведет к громоздкости и ненадежности работы интерференционных узлов, снижает чувствительность устройства.
Наиболее близким по технической сущности к заявленному интерферометру является выбранный в качестве прототипа интерферометр для измерения линейных перемещений, содержащий источник излучения, оптически связанные коллиматор и светоделитель, два уголковых отражателя, каждый из которых установлен соответственно в одном из потоков от светоделителя, два фотоприемника, расположенных соответственно в каждом из потоков, отраженных от уголковых отражателей, и блок регистрации (N.R. Goulty, G.C.P. King, A.T. Wallard "Iodine stabilized laser stainmeter". - Geophys J. Roy. Astr. Soc., 1974, v. 39, p. 269-282).
Применение в опорном плече интерферометра в качестве отражающей системы уголкового отражателя (триппель-призмы) и вследствие этого двух фотоприемников приводит к тому, что для отслеживания перемещений, вызывающих фазовые изменения интерференционной картины, в измерительный блок вводят дополнительный оптический узел, состоящий из нескольких линз, дифракционной решетки и гальванометра. Образованная громоздкая система требует высокой стабильности температуры, давления, влажности помещения, где установлен интерферометр, что выполнить крайне сложно при его расположении в труднодоступных естественных полевых условиях, а несоблюдение этих условий ведет к значительному ухудшению отношения сигнал/шум из-за искажений в интерференционной картине (изменение линейных размеров полос, их ориентации в пространстве и резкости).
Кроме того, изготовление триппель-призм является чрезвычайно трудоемким процессом из-за необходимости расположения отражающих граней как можно более точно под углом 90o друг к другу, чтобы параллельный пучок, падающий на призму, возвращался обратно по прежнему направлению независимо от ориентации призмы. При использовании двух триппель-призм их грани неизбежно будут иметь разные отклонения от 90o, а следовательно, интерферирующие лучи (опорный и измерительный) не будут параллельны друг другу в пространстве. Чем больше угол между интерферирующими лучами, тем уже интерференционные полосы, что ведет к снижению чувствительности интерферометра.
Технической задачей изобретения является повышение чувствительности интерферометра, улучшение отношения сигнал/шум при измерении микросмещений и повышении надежности работы устройства в естественных условиях при его значительном упрощении.
Задача, решается тем, что в интерферометре для измерения перемещений, содержащем источник излучения, оптически связанные с ним коллиматор и светоделитель, два отражателя, каждый из которых установлен соответственно в одном из потоков от светоделителя, фотоприемник и блок регистрации, отражатель, расположенный в опорном плече, выполнен в виде двух плоскопараллельных зеркал, закрепленных с возможностью юстировки на пьезокерамических цилиндрах, которые установлены на оптической скамье под углом 90o друг к другу.
В качестве плоскопараллельных зеркал применяют плоскопараллельные пластины с наружным или внутренним зеркальным покрытием, обеспечивающим практически 100%-ное отражение. Отметим, что применение зеркал с внутренним покрытием из-за практически постоянной разности хода лучей в зеркалах при отражении лучей от внешней грани и внутреннего напыления не влияет на работу интерферометра.
Установление зеркал на оптической скамье диктуется необходимостью обеспечения работоспособности интерферометра, так как ее отсутствие приводит к значительному снижению точности измерений и в конечном итоге к недостижению заявляемого технического результата. Оптическая скамья, изготавливаемая из материала с малым тепловым расширением, позволяет уменьшить влияние температуры, влажности, вибрационных помех на измеряемые параметры и обеспечивает жесткое закрепление элементов интерферометра.
Юстировку зеркал осуществляют с помощью юстировочных болтов, упирающихся с внешней стороны в пластины, на которых закреплены пьезокерамические цилиндры с зеркалами.
Замена уголкового отражателя в опорном плече на два плоскопараллельных зеркала позволяет с помощью юстировочных болтов послать луч от одного зеркала на другое под углом, отличающимся от 90o на столько, на сколько отличается угол от 90o между гранями триппель-призмы, применяемой в измерительном плече. Это позволяет в пространстве опорный и измерительный лучи сделать параллельными, т. е. настроить практически идеальную интерференционную картину.
Применение двух плоскопараллельных зеркал дает возможность отказаться от настройки интерференционной полосовой картины и перейти к настройке интерференции по пятну-минимуму, что приводит к 1) уменьшению дробового шума фотоприемника и, конечно, к улучшению отношения сигнал/шум; 2) слабой зависимости незначительно меняющихся параметров светового луча (интенсивность, размер, расходимость) от температуры, влажности, давления.
Настройку интерференции на пятно-минимум осуществляют следующим образом. С помощью юстировочных винтов опорный луч и луч в измерительном плече устанавливаются параллельными на базе порядка 10 м, затем с помощью отражателя эти лучи сбиваются. При этом возникает интерференционная картина, как правило, в виде слабовыраженных полос или колец (полуколец). Дальнейшей юстировкой с помощью болтов добиваются улучшения интерференционной картины, настраивая ее на пятно-минимум, которое попадает на фотодиод (приемное устройство). Интенсивность лучей, попадающая на фотодиод, описывается следующим выражением
где I1, I2 - интенсивность интерферирующих лучей, L1, L2 - длины плеч интерферометра, λ - длина волны лазера. При I1=I2
Пятно-минимум соответствует случаю, когда
и, следовательно, I= 0. Это при идеальном случае. В реальном случае I1≈I2, и тогда минимуму соответствует интенсивность
Замена одного из уголковых отражателей в опорном плече интерферометра приводит к увеличению чувствительности интерферометра, значительному улучшению отношения сигнал/шум при измерении перемещений, уменьшает влияние вариаций температуры, давления, влажности на измеряемые параметры сигналов, а также значительно упрощает конструкцию устройства.
В реальных условиях использование заявляемого интерферометра позволяет измерять микроперемещения земной коры на базе 50 м с точностью 0,3 нм без подстройки интерференционной картины в течение месяцев, что говорит о надежности системы и невозможности ее разъюстировки.
На фиг. 1 представлена блок-схема интерферометра для измерения перемещений. На фиг. 2 приведен пример регистрации колебаний земной коры, вызванных работой гидроакустического излучателя на частоте 32 Гц, расположенного на удалении 5 км от прибора, выполненного традиционно применяемыми гидроакустическим (2б), и на удалении 20 км от заявляемого интерферометра (2a).
Устройство для измерения перемещений (фиг. 1) содержит последовательно расположенные источник излучения 1, коллиматор и оптический затвор 2, представляющие собой единую систему (диафрагма, поляроид, пластина L/4, коллиматор), светоделитель 3, световод 4, уголковый отражатель 5, плоскопараллельные зеркала на пьезокерамических цилиндрах 6, фотоприемник 7 и систему регистрации 8.
Устройство работает следующим образом. Луч от источника излучения 1 попадает на коллиматор 2, где преобразуется в параллельный пучок и расширяется до размеров, приемлемых при настройке интерференции. Далее пучок направляется на плоскопараллельный светоделитель 3, где расщепляется на два пучка. Один из них (a) через световод 4 попадает в измерительное плечо на отражатель 5, от которого возвращается обратно на светоделитель 3. Другой пучок (б), пройдя плоскопараллельные зеркала 6, попадает на светоделитель 3 в место прихода луча (a) от отражателя 5. В данном месте лучи сбиваются, и с помощью юстировочных болтов (на фиг. 2 не показаны), расположенных на плоскопараллельных зеркалах 6, интерференционная картина настраивается на пятно-минимум, в месте расположения которого устанавливаются фотодиод 7 и система регистрации 8.
Плоскопараллельные зеркала 6 крепятся на пьезокерамических цилиндрах, на один на которых подается сигнал раскачки высокой частоты для определения величины и знака смещения, а на другой - сигнал подстройки к пятну-минимуму при смещении интерференции. Сигнал подстройки характеризует величину смещения. Работой интерферометра управляет система регистрации посредством сигналов, подающихся на пьезокерамические цилиндры.
В качестве отражателя 5 устанавливают прибор, отражающий луч параллельно падающему, например уголковый отражатель или так называемый "кошачий глаз".
Для проверки работы заявляемого интерферометра проведен следующий эксперимент.
В шельфовой зоне моря устанавливают гидроакустический излучатель. На расстоянии 5 и 20 км от него - соответственно гидрофон высокой чувствительности и заявляемый интерферометр. Одновременно осуществляют запись данных гидрофона и интерферометра на магнитофон TEAC, данные с которого затем обрабатывают при помощи спектроанализатора. Как видно из фиг. 2, отношение сигнал/шум кривой регистрации от интерферометра (2a) приблизительно на 10 дБ лучше, чем от гидрофона (2б).
название | год | авторы | номер документа |
---|---|---|---|
ОПТИКО-МЕХАНИЧЕСКИЙ ИЗМЕРИТЕЛЬ ДАВЛЕНИЯ | 1999 |
|
RU2159925C1 |
МАЯТНИКОВЫЙ ЛАЗЕРНЫЙ ИНТЕРФЕРОМЕТР | 2010 |
|
RU2434201C1 |
Лазерно-интерференционный донный сейсмограф | 2017 |
|
RU2653099C1 |
Лазерно-интерференционный измеритель градиента давления в жидкости | 2016 |
|
RU2625000C1 |
Лазерно-интерференционный гидрофон | 2020 |
|
RU2742935C1 |
Лазерно-интерференционный измеритель вариаций давления гидросферы | 2023 |
|
RU2810921C1 |
УСТРОЙСТВО КОНТРОЛЯ ХАРАКТЕРИСТИК СЕЙСМОАКУСТИЧЕСКИХ ДАТЧИКОВ | 1999 |
|
RU2165092C1 |
ИНТЕРФЕРОМЕТР ДЛЯ ИЗМЕРЕНИЯ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ СКАНЕРА ЗОНДОВОГО МИКРОСКОПА | 2015 |
|
RU2587686C1 |
Устройство для измерения абсолютного значения ускорения силы тяжести | 1982 |
|
SU1030753A1 |
Интерферометр для измерения перемещений | 1980 |
|
SU934212A1 |
Изобретение относится к области геофизики и может быть использовано для измерения микродеформаций земной коры и изучения пространственно-временной структуры сейсмоакустических полей. Интерферометр содержит источник излучения и оптически связанные с ним коллиматор и светоделитель, уголковый отражатель и плоскопараллельные зеркала, расположенные на оптической скамье под углом 90° друг к другу и закрепленные на пьезокерамических цилиндрах, фотоприемник и блок регистрации. Использование в качестве одного из отражателей плоскопараллельных зеркал позволило значительно улучшить отношение сигнал/шум и уменьшить вариации температуры, давления, влажности на измеряемые параметры сигналов. 2 ил.
Интерферометр для измерения перемещений, содержащий источник излучения, оптически связанный с ним коллиматор и светоделитель, два отражателя, каждый из которых установлен соответственно в одном из потоков от светоделителя, фотоприемник и блок регистрации, отличающийся тем, что отражатель, расположенный в опорном плече, выполнен в виде двух плоскопараллельных зеркал, закрепленных с возможностью юстировки на пьезокерамических цилиндрах, установленных на оптической скамье под углом 90o друг к другу.
Goulty N.R | |||
at all | |||
Jodine stabilized laser stainmeter, Geophys | |||
J | |||
Roy.Astr | |||
Soc | |||
ПРИБОР ДЛЯ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ ЗВУКОВ | 1923 |
|
SU1974A1 |
Интерферометр фазового сдвига | 1989 |
|
SU1816313A3 |
Устройство для измерения перемещений объекта | 1981 |
|
SU1008615A1 |
Интерференционный способ измерения величины линейных и угловых перемещений | 1976 |
|
SU599158A1 |
Коломийцев Ю.В | |||
Интерферометры | |||
- Л.: Машиностроение, 1976, с.189, 53, 140 - 143 | |||
RU 94020071 А1, 27.01.96 | |||
Способ получения молочной кислоты | 1922 |
|
SU60A1 |
US 5133599 А, 28.07.92. |
Авторы
Даты
2000-03-10—Публикация
1997-12-17—Подача