ОПТОЭЛЕКТРОННЫЙ ДАТЧИК ДАВЛЕНИЯ Российский патент 2004 года по МПК G01L11/00 

Описание патента на изобретение RU2231762C2

Изобретение относится к технической физике, а именно к исследованию характеристик газов и жидкостей, конкретно к измерению давления.

Известен оптический преобразователь давления (а.с. СССР №960561, МПК5 G 01 L 11/00, Б.И. №35, 1982), содержащий прозрачное основание в виде полусферы, мембрану с упругим светопоглощающим элементом, выполненным в форме эллиптического параболоида, установленную через прокладку на плоскости полусферы симметрично относительно ее вертикальной оси, источник излучения и фотоприемник.

Недостатком известного устройства является низкая чувствительность, обусловленная необходимостью сжатия упругого светопоглощающего элемента, что приводит к малым амплитудам колебаний мембраны и, соответственно, незначительным изменениям светового потока, попадающего на фотоприемник.

Наиболее близким к предлагаемому по технической сущности является известный оптоэлектронный датчик давления (патент РФ №2006016 от 15.01.94, G 01 L 11/00), содержащий подвижную мембрану, источник излучения, модулируемый генератором переменного тока, и два фотоприемника, связанные между собой с помощью оптического канала, включающего в себя конденсор, растр, объектив и два зеркала, при этом фотоприемники включены навстречу друг другу и подключены к синхронному детектору.

Работа оптического канала основана на расфокусировке светового потока при прогибах зеркальной мембраны и изменении части светового потока, поступающего на фотоприемник.

При работе оптоэлектронного датчика световой поток от источника излучения через верхнюю половину растра, верхнюю половину конденсора, объектив падает на зеркальную мембрану. Отразившись от зеркальной мембраны, этот поток проходит через нижнюю половину растра и конденсора и зеркалом собирается на первом фотоприемнике. Растр установлен в фокальной плоскости объектива, при прогибах зеркальной мембраны возникает расфокусировка и изменение светового потока, поступающего от источника на первый фотоприемник. Изменение светового потока и, соответственно, развиваемого фотоприемником сигнала пропорционально изменению действующего на зеркальную мембрану давления.

Для повышения стабильности схема снабжена вторым приемником светового потока, а источник питается от генератора переменного тока. От этого же генератора опорное напряжение поступает на синхронный детектор. На второй фотоприемник световой поток направляется вторым зеркалом, минуя оптическую систему. Развиваемый фотоприемником сигнал служит для стабилизации работы всей системы. Электрические сигналы от обоих приемников поступают через синхронный детектор на измерительный прибор.

Недостатком устройства является то, что его работа основана на расфокусировке излучения и перераспределении части излучения, поступающего на фотоприемник и поглощающегося на растре. Эффект модуляции интенсивности пучка на фотоприемнике полностью определяется относительным смещением Δ x/f (где Δ х - смещение зеркальной мембраны, f - фокусное расстояние линзы) отражающей мембраны из фокальной плоскости линзы. Следствием этого является необходимость использования линз с малым фокусным расстоянием (и, соответственно, малым диаметром), что существенно снижает часть оптической мощности, используемой для получения измерительной информации, уменьшает отношение сигнал-шум на входе фотоприемника и чувствительность датчика давления. Кроме того, становится практически невозможным проведение дистанционных (при значительном удалении от источника излучения и фотоприемника) измерений.

Задачей настоящего изобретения является повышение чувствительности оптоэлектронного датчика давления и обеспечение дистанционности измерений.

Поставленная задача достигается тем, что в оптоэлектронном датчике давления, содержащем подвижную мембрану, источник излучения, модулируемый генератором переменного тока, синхронный детектор, первый и второй фотоприемники, по ходу луча установлены телескопическая оптическая система, делитель пучка, трапецеидальная призма, грань которой отделена от подвижной мембраны зазором, толщина которого d2 выбрана из условия:

где λ 0 - длина волны излучения (м);

n1 - показатель преломления трапецеидальной призмы;

α p - угол падения излучения на диагональную грань призмы (рад),

при этом делитель пучка направляет световой поток от источника излучения на первый фотоприемник и трапецеидальную призму, а от призмы - на второй фотоприемник, а выходы фотоприемников подключены к синхронному детектору.

Телескопическая система формирует оптический пучок с малой угловой расходимостью, форма трапецеидальной призмы обеспечивает определенный угол падения излучения на зазор и возвращение его на делитель пучка, а подвижная мембрана совместно с призмой образуют высокодобротную резонансную многослойную оптическую структуру.

Такое сочетание элементов обеспечивает получение высокой чувствительности и обеспечивает дистанционность измерений. Амплитуда разностного сигнала фотоприемников пропорциональна давлению или его изменению.

На чертеже дана схема предлагаемого оптоэлектронного датчика давлений: 1 - источник излучения, 2 - телескопическая система, 3 - делитель пучка, 4 - приемник излучения, 5 - трапецеидальная призма, 6 - подвижная мембрана, 7 - приемник излучения, 8 - синхронный детектор, 9 - схема обработки, 10 - генератор переменного тока.

Схема оптоэлектронного датчика состоит из источника излучения 1, расположенного перед телескопической оптической системой 2. За ними расположен делитель пучка 3, направляющий световой поток от источника излучения на фотоприемник 4 и трапецеидальную призму 5, грань которой отделена от подвижной мембраной 6 зазором, а от призмы - на фотоприемник 7. Выходы фотоприемников подключены к синхронному детектору 8, выход которого объединен с входом схемы обработки 9. Генератор переменного тока 10 подключен к источнику излучения и обеспечивает модуляцию оптического излучения.

Устройство работает следующим образом. Световой поток от источника излучения 1 через телескопическую систему 2, делитель пучка 3 направляется на трапецеидальную призму 5, на грани которой с зазором установлена мембрана 6. Мембрана и трапецеидальная призма образуют резонансный угловой фильтр с единственным резонансом, характеризующийся сильной зависимостью коэффициента отражения от угла падения излучения на фильтр. Резонансный угол падения определяется выражением

где n1 - показатель преломления трапецеидальной призмы;

n2- показатель преломления среды, заполняющей зазор между мембраной и гранью призмы (при воздушном заполнении n2=1);

d2 - величина зазора между мембраной и диагональной гранью трапецеидальной призмы (м).

Форма трапецеидальной призмы выбрана таким образом, чтобы обеспечивать двойное взаимодействие оптического излучения с подвижной мембраной и возврат его на делитель пучка.

При воздействии давления на мембрану она прогибается, как следствие изменяются зазор d2 и коэффициент отражения от системы, определяемый выражением

где y=KxL0Δαp - обобщенная угловая расстройка; (4)

Кx - продольное волновое число в зазоре (1/м);

L0- постоянная длины резонансной системы (м);

Δ α р- изменение резонансного угла падения (рад).

Величина изменения резонансного угла падения Δ α р зависит от величины изменения зазора Δ d2 при прогибе мембраны и определяется выражением

В результате появления угловой расстройки возникает амплитудная модуляция пучка.

Благодаря тому что оптический пучок дважды проходит через резонансный угловой фильтр, образованный мембраной и гранью призмы, глубина амплитудной модуляции увеличивается.

Пройдя через призму, пучок возвращается на делитель пучка 3 и направляется им на фотоприемник 7. Изменение светового потока и, соответственно, развиваемого фотоприемником сигнала пропорционально изменению действующего на мембрану давления.

Для повышения стабильности и помехозащищенности схема снабжена вторым фотоприемником светового потока 4, а источник излучения модулируется переменным током от генератора 10. На фотоприемник 4 пучок направляется делителем пучка 3.

Развиваемый фотоприемником 4 электрический сигнал является опорным и служит для стабилизации работы всего устройства.

Электрические сигналы с обоих фотоприемников поступают на синхронный детектор 8, где сигнал от фотоприемника 7 детектируется и поступает на схему обработки 9.

Схема обеспечивает существенное повышение чувствительности оптоэлектронного датчика давления, позволяет производить дистанционные измерения давления и может быть использована как датчик давления и как датчик акустических колебаний.

Пример. Для оптоэлектронного датчика давления с длинной волны оптического излучения λ о=0,63мкм, показателем преломления трапецеидальной призмы n1=1.51, зазором между мембраной и гранью призмы d2=10 мкм и воздушным заполнением зазора (n2=1) резонансный угол падения, определяемый выражением (2), составляет α p=41,446° .

При смещении мембраны на величину Δ d2=0.1 мкм резонансный угол α p изменяется на величину, определяемую выражением (5), и составляет Δ α р=8.7709· 10-6 рад.

Для нашего случая Kx=105 1/cм, L0=1 cм, и обобщенная расстройка, вычисленная по (4), равна у=0.87709.

Коэффициент отражения от системы, определяемый выражением (3), равен R(0.87709)=0.18945.

Для системы при отсутствии давления на мембрану y=0, R(0)=0. Отсюда видно, что незначительному смещению мембраны соответствует большое изменение коэффициента отражения от системы и, как следствие, выходного сигнала.

Кроме того, данное устройство имеет дополнительное достоинство - скрытность получения информации. Это обеспечивается тем, что оптическое излучение, несущее полезную информацию направляется только в ту точку, откуда поступает зондирующий луч. Удаление трапецеидальной призмы совместно с подвижной мембраной, отделенной зазором, от остальных элементов устройства может доходить до десятков и сотен метров.

Похожие патенты RU2231762C2

название год авторы номер документа
ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ 2004
  • Толстунов Сергей Андреевич
  • Мозер Сергей Петрович
RU2270428C1
ОПТОЭЛЕКТРОННЫЙ ДАТЧИК ДАВЛЕНИЯ 1990
  • Панкратов Н.А.
RU2006016C1
Миниатюрный оптический микрофон с резонатором на модах шепчущей галереи 2021
  • Минин Игорь Владиленович
  • Минин Олег Владиленович
RU2771592C1
ОПТИЧЕСКИЙ АТТЕНЮАТОР 1995
  • Покровский Ю.А.
  • Паринский А.Я.
  • Миронов М.М.
  • Полынкин А.В.
  • Титов С.Н.
  • Кудряшов А.Н.
RU2090918C1
Измеритель разности двух давлений 1991
  • Багдасаров Завен Егишевич
  • Гришин Юрий Алексеевич
  • Королев Борис Константинович
  • Лаврентьев Валентин Александрович
  • Сергеев Владимир Филиппович
  • Таран Владлен Абрамович
SU1812451A1
Способ контроля лучевой прочности оптических изделий и устройство для его осуществления 1989
  • Иртуганов Шамиль Шигабетдинович
  • Вольпов Александр Львович
  • Горелик Борис Давыдович
  • Лопаткин Владимир Николаевич
  • Толмачев Андрей Иванович
  • Родионова Нина Борисовна
  • Киреев Сергей Евгеньевич
SU1778632A1
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ВНЕШНЕГО ВОЗДЕЙСТВИЯ НА СРЕДУ ИЛИ ОБЪЕКТ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Никитин Петр Иванович
  • Белоглазов Анатолий Анатольевич
RU2021590C1
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ МОД ПЛАНАРНЫХ ОПТИЧЕСКИХ ВОЛНОВОДОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Редько Всеволод Петрович[By]
  • Романенко Алексей Андреевич[By]
  • Сотский Александр Борисович[By]
  • Хомченко Александр Васильевич[By]
RU2022247C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ 2004
  • Цаплин Алексей Иванович
  • Репин Василий Николаевич
  • Репин Максим Васильевич
  • Аксенов Роман Аликсеевич
  • Ермаков Николай Александрович
RU2269755C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ БИОЛОГИЧЕСКИХ, БИОХИМИЧЕСКИХ, ХИМИЧЕСКИХ ИЛИ ФИЗИЧЕСКИХ ПАРАМЕТРОВ СРЕДЫ 1993
  • Никитин Петр Иванович
  • Белоглазов Анатолий Анатольевич
RU2021591C1

Реферат патента 2004 года ОПТОЭЛЕКТРОННЫЙ ДАТЧИК ДАВЛЕНИЯ

Изобретение относится к технической физике, а именно к исследованию характеристик газов и жидкостей, конкретно к измерению давления. В оптоэлектронном датчике давления, содержащем подвижную мембрану, источник излучения, модулируемый генератором переменного тока, синхронный детектор, первый и второй фотоприемники, по ходу луча установлены телескопическая оптическая система, делитель пучка, трапецеидальная призма, грань которой отделена от подвижной мембраны зазором, толщина которого d2 выбрана из условия: , где λ0 - длина волны излучения (м); n1- показатель преломления трапецеидальной призмы; αр - угол падения излучения на грань призмы (рад), при этом делитель пучка направляет световой поток от источника излучения на первый фотоприемник и трапецеидальную призму, а от призмы - на второй фотоприемник, а выходы фотоприемников подключены к синхронному детектору. Телескопическая система формирует оптический пучок с малой угловой расходимостью, форма трапецеидальной призмы обеспечивает определенный угол падения излучения на зазор и возвращение его на делитель пучка, а подвижная мембрана совместно с призмой образуют высокодобротную резонансную многослойную оптическую структуру. Технический результат - повышение чувствительности оптоэлектронного датчика давления и обеспечение дистанционности измерений. 1 ил.

Формула изобретения RU 2 231 762 C2

Оптоэлектронный датчик давления, содержащий подвижную мембрану, источник излучения, модулируемый генератором переменного тока, синхронный детектор, первый и второй фотоприемники, отличающийся тем, что по ходу луча установлены телескопическая оптическая система, делитель пучка, трапецеидальная призма, грань которой отделена от подвижной мембраны зазором, толщина которого d2 выбрана из условия

λ0 - длина волны излучения, м;

n1 - показатель преломления трапецеидальной призмы;

αр - угол падения излучения на грань призмы, рад,

при этом делитель пучка направляет световой поток от источника излучения на первый фотоприемник и трапецеидальную призму, а от призмы - на второй фотоприемник, а выходы фотоприемников подключены к синхронному детектору.

Документы, цитированные в отчете о поиске Патент 2004 года RU2231762C2

ОПТОЭЛЕКТРОННЫЙ ДАТЧИК ДАВЛЕНИЯ 1990
  • Панкратов Н.А.
RU2006016C1
Оптический преобразователь давления 1981
  • Пасынков Владимир Игоревич
  • Жемойтель Елена Павловна
SU960561A1
УСТРОЙСТВО для ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГОВОЛОКНА 0
SU243772A1
Оптический измеритель давления 1984
  • Шиляев Валерий Николаевич
  • Дородов Владимир Семенович
SU1185135A1
ОПТИЧЕСКИЙ АТТЕНЮАТОР 1995
  • Покровский Ю.А.
  • Паринский А.Я.
  • Миронов М.М.
  • Полынкин А.В.
  • Титов С.Н.
  • Кудряшов А.Н.
RU2090918C1
ЦВЕТНОЕ ПРОЕКЦИОННОЕ УСТРОЙСТВО (ВАРИАНТЫ) 1994
  • Благов П.А.
  • Душин В.И.
  • Глазова И.А.
RU2082206C1
МНОГОКАСКАДНЫЙ ОПТОЭЛЕКТРОННЫЙ КОММУТАТОР 1993
  • Федоров Вячеслав Борисович
RU2088960C1
Справочник конструктора оптико-механических приборов
/Под общ
ред
В.А
Панова
- Л.: Машиностроение, 1980, с.170.

RU 2 231 762 C2

Авторы

Макарецкий Е.А.

Овчинников А.В.

Даты

2004-06-27Публикация

2002-01-03Подача