УСКОРИТЕЛЬ ПУЧКОВ ЗАРЯЖЕННЫХ ЧАСТИЦ Российский патент 2004 года по МПК H05H5/02 

Описание патента на изобретение RU2234204C1

Изобретение относится к ускорителям пучков заряженных частиц, в частности электронов, и может быть использовано в физике, химии и медицине.

Известен ускоритель пучков заряженных частиц, включающий металлическую оболочку, внутри которой размещен слой диэлектрического материала в виде стержня. Между металлической оболочкой и диэлектрическим материалом, а также вдоль центральной оси симметрии внутри диэлектрического материала имеются вакуумные каналы для пролета пучков заряженных частиц, см. Rhon Kerning и др. “ANNULAR BEAM DRIVEN HIGH GRADIENT ACCELERATORS”, сборник материалов конференции “Proceeding Beam 1988, 7th International Conference High-Power Particle Beams, pp.864-869” (копия ссылки прилагается).

Недостатком этого ускорителя является то, что сгусток заряженных частиц неустойчив и после короткого пролета осаждается на стенках оболочки.

Известен также ускоритель пучков заряженных частиц, включающий металлическую оболочку, внутри которой размещен слой диэлектрического материала, и вакуумный канал, выполненный вдоль центральной оси симметрии металлической оболочки, см. W. Gai и др. Experimental Demonstration of Wake-Field Effects in Dielectric Structures, PHYSICAL REVIEW LETTERS, vol.61, N 24, pp.2756-2758, 12.12.1988 (копия ссылки прилагается).

Данное техническое решение принято за прототип настоящего изобретения.

Его недостатком является неуправляемость параметрами ускорителя; вследствие несинфазности пучка заряженных частиц и ускоряющей волны снижается эффективность ускорения.

В основу настоящего изобретения положено решение задачи обеспечения управляемости параметрами ускорителя и, соответственно, возможности регулировки синфазности.

Согласно изобретению эта задача решается за счет того, что в ускорителе пучков заряженных частиц, включающем металлическую оболочку, внутри которой размещен слой диэлектрического материала, и вакуумный канал для пролета электронов, выполненный вдоль центральной оси симметрии металлической оболочки, внутри металлической оболочки дополнительно размещен слой сегнетоэлектрического материала; слой сегнетоэлектрического материала может быть размещен между металлической оболочкой и слоем диэлектрического материала; слой сегнетоэлектрического материала может быть размещен внутри слоя диэлектрического материала.

Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию "новизна".

Благодаря реализация отличительных признаков изобретения объект приобретает весьма важное новое свойство: появляется возможность регулировать синфазность пучка заряженных частиц и ускоряющей их волны. Заявителю неизвестны какие-либо источники информации, в которых были бы сведения о наличии в ускорителях пучков заряженных частиц дополнительного слоя сегнетоэлектрического материала и обеспечении тем самым возможности управления параметрами ускорителя.

Это обстоятельство позволяет, по мнению заявителя, сделать вывод о соответствии заявленного технического решения критерию “изобретательский уровень”.

Сущность изобретения поясняется чертежами, где изображено:

на фиг.1 - поперечный разрез ускорителя; слой сегнетоэлектрического материала размещен между металлической оболочкой и диэлектриком;

на фиг.2. - поперечный разрез ускорителя; слой сегнетоэлектрического материала размещен внутри слоя диэлектрического материала.

Ускоритель пучков заряженных частиц включает металлическую оболочку 1, внутри которой размещен слой 2 диэлектрического материала и вакуумный канал 3, выполненный вдоль центральной оси симметрии металлической оболочки 1. В качестве диэлектрического материала могут использоваться высокочастотные керамические материалы с диэлектрической проницаемостью от 4 до 45. Основу этих диэлектриков составляют оксидные системы - соединения и твердые растворы, такие как кардиерит (2MgO·2Al2O3·5SiO2) с ε≈4.7, корунд (Аl2О3) с ε≈9.7, титанаты магния и кальция системы MgO-CaO-TiO2 с ε от 14 до 20, а также твердые растворы титаната кальция-алюминатов редкоземельных элементов СаТiO3-LnAlO3 (Ln-La, Nd)c ε от 38 до 45. Особенностью этого класса диэлектрических материалов является их весьма малые диэлектрические потери в диапазоне СВЧ.

Внутри металлической оболочки 1 дополнительно размещен слой 4 сегнетоэлектрического материала; он может быть размещен между металлической оболочкой 1 и слоем 2 диэлектрического материала (фиг.1) или внутри этого слоя (фиг.2). Сегнетоэлектрический материал в конкретном примере представляет собой твердый раствор титанатов бария и стронция (Ba, Sr)Tio3 с добавками оксидов и соединений различных элементов. Диэлектрическая проницаемость лежит в пределах от 200 до 600, a tg δ в диапазоне 10...35 ГГц составляет величину 0.004...0.006. При этом управляемость ε электрическим полем лежит в пределах (5-15)%. При указанных выше параметрах высокочастотной керамики и сегнетоэлектрического материала управляемость ускорительной структуры составит в зависимости от толщины управляющего сегнетоэлектрического слоя и конкретного значения диэлектрической проницаемости.

Устройство работает следующим образом. В ускоритель из инжектора известного типа подают сильноточный пучок заряженных частиц низких энергий, в конкретном примере, электронов с энергией 15-50 МэВ, длительностью импульса 10-40 не и зарядом 10-100 нК. Этот пучок возбуждает внутри ускорителя высокочастотную электромагнитную волну с частотой 10-35 ГГц. Затем в ускоритель подают слаботочный пучок электронов высоких энергий (более 100 МэВ), длительностью импульса 10-40 не и зарядом менее 0,1 нК. Электроны слаботочного пучка ускоряются в поле высокочастотной электромагнитной волны и возбуждают сильноточные пучки электронов. Для обеспечения синфазности слаботочного пучка электронов и высокочастотной электромагнитной волны создают постоянное электрическое поле в слое 4 сегнетоэлектрического материала; это осуществляют в конкретном примере путем подачи на него через нанесенные на него металлические контакты (на чертежах не показаны) постоянного электрического напряжения. Напряженность постоянного электрического поля составляет от 1 до 10 В/мкм. Меняя значение этого параметра можно изменять диэлектрическую проницаемость сегнетоэлектрического материала и таким образом подстраивать частоту и, соответственно, фазовую скорость электромагнитной волны относительно скорости пучка электронов.

Для реализации изобретения использованы известные материалы и технические средства, что позволяет сделать вывод о его соответствии критерию “промышленная применимость”.

Похожие патенты RU2234204C1

название год авторы номер документа
КЕРАМИЧЕСКИЙ КОМПОЗИТНЫЙ МАТЕРИАЛ 2005
  • Ненашева Елизавета Аркадьевна
RU2293717C1
Миниатюрный трехзазорный клистронный резонатор с полосковыми линиями на диэлектрической подложке 2023
  • Мирошниченко Алексей Юрьевич
  • Чернышев Максим Алексеевич
  • Царев Владислав Алексеевич
  • Акафьева Наталья Александровна
RU2812270C1
УСКОРИТЕЛЬ ЗАРЯЖЕННЫХ ЧАСТИЦ 2006
  • Щелкунов Геннадий Петрович
  • Олихов Игорь Михайлович
  • Петров Дмитрий Михайлович
RU2306685C1
МНОГОКАНАЛЬНЫЙ ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ ЗАРЯЖЕННЫХ ЧАСТИЦ 2001
  • Кулиш Виктор Васильевич
  • Мельник Александра Клавдия
RU2198485C1
СПОСОБ УСКОРЕНИЯ МАКРОЧАСТИЦ 2013
  • Доля Сергей Николаевич
  • Доля Сергей Сергеевич
RU2523439C1
ИЗЛУЧАЮЩАЯ ТРУБКА, А ТАКЖЕ УСКОРИТЕЛЬ ЧАСТИЦ С ИЗЛУЧАЮЩЕЙ ТРУБКОЙ 2009
  • Хайд Оливер
RU2544838C2
УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ ЯДЕРНЫХ РЕАКЦИЙ СИНТЕЗА В СИСТЕМЕ НА ВСТРЕЧНЫХ ПУЧКАХ 2023
  • Жиляков Лев Альбертович
  • Куликаускас Вацлавас Станиславович
RU2813817C1
СПОСОБ ВОЗБУЖДЕНИЯ СЕГНЕТОЭЛЕКТРИЧЕСКОЙ АНТЕННЫ И ЕЕ УСТРОЙСТВО 2004
  • Егошин А.В.
  • Музыря О.И.
  • Моторин В.Н.
  • Фролов А.М.
RU2264005C1
УСКОРИТЕЛЬ ЗАРЯЖЕННЫХ ЧАСТИЦ 2013
  • Ефимов Игорь Николаевич
  • Морозов Евгений Александрович
RU2531808C1
ЭЛЕКТРОСТАТИЧЕСКИЙ УСКОРИТЕЛЬ ИОНОВ 2005
  • Иосселиани Дмитрий Дмитриевич
RU2309559C2

Иллюстрации к изобретению RU 2 234 204 C1

Реферат патента 2004 года УСКОРИТЕЛЬ ПУЧКОВ ЗАРЯЖЕННЫХ ЧАСТИЦ

Изобретение относится к ускорителям пучков заряженных частиц, в частности электронов, и может быть использовано в физике, химии и медицине. В ускорителе пучков заряженных частиц, включающем металлическую оболочку, внутри которой размещен слой диэлектрического материала, и вакуумный канал для пролета электронов, выполненный вдоль центральной оси симметрии металлической оболочки, внутри металлической оболочки дополнительно размещен слой сегнетоэлектрического материала; слой сегнетоэлектрического материала может быть размещен между металлической оболочкой и слоем диэлектрического материала; слой сегнетоэлектрического материала может быть размещен внутри слоя диэлектрического материала. Технический результат - обеспечивается управляемость параметрами ускорителя и появляется возможность регулировать синфазность пучка заряженных частиц и ускоряющей их волны. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 234 204 C1

1. Ускоритель пучков заряженных частиц, включающий металлическую оболочку, внутри которой размещен слой диэлектрического материала, и вакуумный канал для пролета электронов, выполненный вдоль центральной оси симметрии металлической оболочки, отличающийся тем, что внутри металлической оболочки дополнительно размещен слой сегнетоэлектрического материала.2. Ускоритель пучков заряженных частиц по п.1, отличающийся тем, что слой сегнетоэлектрического материала размещен между металлической оболочкой и слоем диэлектрического материала.3. Ускоритель пучков заряженных частиц по п.1, отличающийся тем, что слой сегнетоэлектрического материала размещен внутри слоя диэлектрического материала.

Документы, цитированные в отчете о поиске Патент 2004 года RU2234204C1

W.GAI и др
Experimental Demonstration of Wake-Fild Effects in Dielectric Structures, PHYSICAL REVIEW LETTERS, vol.61, N24, 12.12.1988, p.2756-2758
US 4004175 А, 18.01.1977
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ПЛАЗМЫ НА ОСНОВЕ СКОЛЬЗЯЩЕГО РАЗРЯДА 1999
  • Гитерман Б.П.
  • Дубинов А.Е.
  • Макарова Н.Н.
  • Петров Н.Н.
  • Селемир В.Д.
RU2178243C2
МАШИНА ДЛЯ ВОССТАНОВЛЕНИЯ ЗЕМЛЯНОГО ПОЛОТНА 1994
  • Йозеф Немец[Cs]
  • Влад Поханка[Cs]
  • Ярослав Йирак[Cs]
  • Роман Вагнер[Cs]
RU2100512C1
US 6090455 А, 18.07.2000.

RU 2 234 204 C1

Авторы

Канарейкин А.Д.

Ненашева Е.А.

Даты

2004-08-10Публикация

2003-03-05Подача