ЭЛЕКТРОМАГНИТНЫЕ ОТОБРАЖАЮЩИЕ И ЛЕЧЕБНЫЕ (ЭМОЛ) СИСТЕМЫ Российский патент 2004 года по МПК A61B5/05 

Описание патента на изобретение RU2234244C2

Область применения изобретения

Настоящее изобретение относится к ЭМОЛ системам. В частности, изобретение имеет отношение к аппаратуре и способу, посредством которых создается многочастотное микроволновое излучение в сочетании с, предпочтительно, низкой частотой, чтобы генерировать микроволновое излучение от совокупности источников с внешней фокусировкой для удаления ткани. Изобретение включает в себя несколько вариантов ЭМОЛ систем, различающихся частотными уровнями. Кроме того, изобретение включает в себя компьютерное программное обеспечение, специально конфигурированное и приспособленное к ЭМОЛ системе с интерфейсом отображения графики и трехмерной томографии.

Уровень техники

Микроволновая томография является относительно новой технологией с огромными возможностями для использования в медицине и смежных с ней областях. Наибольшее развитие эта технология получила применительно к использованию во внутреннем неагрессивном (не проникающем) отображении в режиме реального времени физиологических свойств тканей и органов, основанном на различии диэлектрических свойств ткани.

Микроволновое томографическое отображение, отвечающее уровню техники, использует микроволновое излучение для отображения объекта путем обнаружения воздействия объекта на пучок микроволнового излучения после его столкновения с объектом. Изменения в отраженном микроволновом излучении, обусловленные этим столкновением, зависят от диэлектрической проницаемости и проводящих свойств тканей отображаемого объекта. В частности, для данной частоты микроволнового излучения, наблюдаемые изменения в отраженном микроволновом сигнале свидетельствуют о специфической сигнатуре отображаемой ткани.

Микроволновое излучение представляет собой радиоволны от ультравысокой до сверхвысокой частоты, с очень малой длиной волны, находящейся в диапазоне примерно от 130 сантиметров до долей миллиметра. Частоты находятся в диапазоне от 0,1 гигагерц (ГГц) до 300 ГГц. Микроволновой диапазон, используемый в настоящее время для микроволнового отображения биологических тканей, составляет примерно от 0,5 до 3 ГГц. Однако можно также использовать и другие диапазоны микроволнового спектра. Выбор диапазона определяется тем, что излучение не должно быть ионизирующим, чтобы предотвратить разрушение элементов ткани или клеток. Соответственно, при определении совместимого частотного диапазона следует учитывать биофизические параметры.

Согласно уровню техники используются два основных типа микроволнового отображения. Первый тип - это статическое отображение, основанное на формировании изображений путем определения значений абсолютной диэлектрической проницаемости микроволнового излучения после его взаимодействия с объектом. Второй тип - это динамическое отображение, которое основано на изменениях диэлектрической проницаемости, имеющих место в объекте на момент падения микроволнового излучения. Последний вид отображения исключительно полезен применительно к отображению биологических тканей, с целью слежения за непрерывными физиологическими изменениями. Как в статической, так и в динамической технологии требуется процесс активного отображения, в ходе которого микроволновый сканер использует движущееся или сканирующее падающее излучение и обнаруживает изменения в микроволновом излучении, основанные вследствие взаимодействия с отображаемым объектом.

При использовании динамического отображения воспроизведение изображения основано на различии дифрагированных полей, зарегистрированных на основании нескольких наборов данных, полученных из тела при изменении диэлектрического контраста. Однако внутреннее отображение в более крупных телах сталкивается с проблемами разрешения, которые ограничивают объем применения динамического отображения. Настоящее изобретение, включающее в себя прилагаемую информацию, относящуюся к предмету рассмотрения, обеспечивает значительные преимущества по отношению к техническим решениям из уровня техники благодаря интегрированию биофизической технологии, технологии компьютерного программного обеспечения и технологии микроволновой томографии с целью создания изображения с высоким разрешением.

Краткое содержание изобретения

Изобретение объединяет и реализует устройства и способ, относящиеся к областям биофизики, компьютерных алгоритмов и микроволновой томографии, с целью предоставления системы трехмерной томографии. В частности, изобретение включает в себя новый способ и систему медицинской физиологической томографии, в которой система одночастотной трехмерной микроволновой томографии (3-М МВТ) сочетается с системой одночастотной трехмерной импедансной томографии (3-М ИТ), способную отображать крупные биологические объекты, например, человеческий торс.

В частности, настоящее изобретение обеспечивает внутреннее неагрессивное отображение в режиме реального времени физиологических свойств и временных изменений тканей и органов на основании различий в диэлектрических свойствах ткани. Например, с использованием изобретения было показано, что диэлектрические свойства миокарда являются чувствительными индикаторами его физиологического состояния, включая местное кровоснабжение, ишемию и инфаркт. Степень изменения диэлектрических свойств миокарда предоставляет достаточные данные для восстановления с использованием микроволновой томографии. Точнее говоря, изобретение включает в себя ЭМОЛ систему с несколькими частотами микроволнового излучения (микроволновая спектроскопия) и одну частоту (около 0,2 МГц), которая ниже частоты релаксации клеточной мембраны. Это сочетание частот, отвечающее изобретению, позволяет оценивать такие биофизические параметры ткани, как доля клеточного объема, внутриклеточное и мембранное сопротивления, емкость клеточной мембраны, содержание в ткани свободной и связанной воды и температуру ткани. Следует отметить, что подобная информация играет важную роль не только в кардиологии, но и других областях медицины, в частности, онкологии, урологии, неврологии и (предварительная информация) исследованиях HIV.

Кроме того, настоящее изобретение предоставляет математические модели и компьютерные алгоритмы для создания ранее недоступных изображений с четкой структурой, воспроизводимых на количественной основе, описывающих точное распределение диэлектрических свойств внутри объекта.

Кроме того, настоящее изобретение предоставляет лечебное устройство, обеспечивающее внутренний местный перегрев ткани путем фокусировки электромагнитной энергии.

Краткое описание чертежей

Фиг.1 представляет общий вид системы трехмерной томографии.

Фиг.2 представляет собой схему основных составных частей системы трехмерной томографии.

Фиг.3 представляет собой экранное отображение МБ (микроволновой) коммутации для однооконного меню.

Фиг.4 представляет собой экранное отображение меню калибровки для MB коммутации.

Фиг.5 представляет собой экранное отображение MB коммутации для 4-оконного меню.

Описание преимущественного варианта реализации

Настоящее изобретение предоставляет систему трехмерной микроволновой томографии, которая объединена с системой трехмерной импедансной томографии. В частности, изобретение включает в себя систему одночастотной трехмерной микроволновой томографии, объединенную с системой одночастотной трехмерной электрической импедансной томографии, обеспечивая возможность отображения крупных биологических объектов, например, человеческий торс или его части. То, что раскрыто в настоящем изобретении, имеет как теоретическую, так и экспериментальную ценность, демонстрируя некоторые достоинства и достижения изобретения по отношению к уровню техники, доступному в настоящее время в медицинской диагностике и лечении.

Настоящее изобретение предусматривает поэтапный подход, согласно которому ЭМОЛ система первого поколения запускается с возможностью усовершенствования до системы второго поколения. Первое поколение отличается наличием двух систем, имеющих следующие характеристики: (а) многочастотная микроволновая спектроскопическая томографическая (0,2-6 ГГц) и (б) одночастотное микроволновое излучение (0,8-1 ГГц) с одной низкой частотой (200 кГц). Второе поколение включает в себя три системы со следующими отличительными характеристиками: (а) многочастотное микроволновое излучение 0,2-6 ГГц, (б) одна низкая частота приблизительно 200 кГц и (в) микроволновое излучение от совокупности источников с внешней фокусировкой для удаления ткани (60°С).

Кроме того, настоящее изобретение предоставляет уникальные алгоритмы и программное обеспечение, позволяющее генерировать из ЭМОЛ систем высокоточные изображения. В частности, алгоритмы позволяют восстанавливать изображение из микроволновой томографии. Поскольку приближение геометрической оптики, используемое при создании изображений в рентгеновской томографии, практически неприменимо к микроволновой томографии, главным образом, из-за того, что распространение электромагнитной волны в биологической среде вызывает явление дифракции и интерференции, необходимо разработать особые алгоритмы решения уравнений Максвелла или их скалярного приближения. Настоящее изобретение предоставляет алгоритмические модели и компьютерные программы для решения этих уравнений и позволяет по мере необходимости восстанавливать изображения. Подробности, касающиеся типов моделей, исходных положений, ограничений и относящихся к ним математических постулатов, обсуждаются в совместно рассматриваемых заявках 08/896525 от 4 июля 1997 г. (указанной по некоторым документам как 08/896526 от 5 июля 1997 г.), 60/047604 от 23 мая 1997 г. и 08/250762, сейчас патент США №5715819, включенный в описание посредством ссылки.

Настоящее изобретение предусматривает МВТ и ИТ, объединенные в единую систему трехмерной микроволновой томографии. Система позволяет обследовать большие биологические объекты. Устройство и способ в соответствии с настоящим изобретением обеспечивают ранее неизвестные и недостижимые прогресс и преимущества в данной области. В частности, изобретение позволяет создать совершенно неагрессивную томографическую систему. Обычно энергия "фотонов" в микроволновой области достаточно мала и не вызывает ионизационных эффектов, которые имеют место в рентгеновской томографии. Кроме того, все томографические системы для внутреннего отображения тела основаны на различии свойств ткани. Например, при рентгеновской томографии ткань различается по плотности. Однако плотность ткани не всегда зависит от физиологического состояния ткани. Важные характеристики ткани, например, температура, состав крови, ее насыщение кислородом, ишемия, инфаркт нельзя различить путем рентгеновской томографии. Согласно указанным выше заявкам, включенным в описании посредством ссылки, свойства ткани можно описывать посредством их комплексного диэлектрического значения е' и доли клеточного объема.

В общем случае анатомическую структуру объекта можно без труда восстановить, используя традиционные способы, например, рентгеновскую или ЯМР- (ядерный магнитный резонанс) томографию. Однако ни рентгеновская, ни ЯМР-томография не дает надежной информации о физиологическом состоянии ткани. Возможности эффективного объединения этих средств существенным образом ограничены. Во-первых, информация, полученная с помощью технологии ЯМР, отражает, главным образом, состояние ядра, поскольку она относится к резонансу ядерного спина во внешнем поле. Во-вторых, способ ЯМР требует длительного времени сбора данных для отображения физиологических свойств. Для того чтобы преодолеть эти ограничения, требуется очень высокая мощность и однородные магнитные поля, что создает опасность для пациентов, не говоря уже о технических ограничениях, связанных со сложностью конструкции и управления.

Настоящее изобретение предусматривает одновременное обследование объекта с разных сторон в режиме реального времени. На фиг.1 и 2 изображена схема системы 10 трехмерной томографии. Система включает в себя испытательную камеру 12, блок общего управления 14 и кластеры 16 антенн. Каждый кластер заключает в себе MB антенны 18, MB приемопередатчик 20, импедансные электроды 22, импедансные приемопередатчики 24, ССД (систему сбора данных) 26 и источник питания 28. Кластер предпочтительно монтировать с возможностью регулировки на системе точного позиционирования 29. Система 10 также включает в себя центральный компьютер 30, с которым осуществляется обмен данными.

Объект изучения помещают в испытательную камеру 12, заполненную растворами, имеющими различные диэлектрические свойства. Испытательная камера 12 включает в себя датчики температуры, уровня раствора, ЭКГ пациента и пр. Блок общего управления 14 управляет работой системы, генерирует и распространяет синхронные сигналы. МБ антенны 18, как и импедансные электроды 22, объединяются в антенные кластеры 16 и используются для облучения и приема сигналов. Антенные кластеры 16 включают низкошумовые усилители и усилители выходного уровня для MB приемопередатчиков 20 и импедансных приемопередатчиков 24 в дополнение к обеспечению управления канальным распределением сети. MB приемопередатчики 20 и импедансные приемопередатчики 24 усиливают, модулируют и преобразуют совокупные сигналы. Система сбора данных 26 используется для выборки, фильтрации и обработки сигналов во взаимодействии с центральным компьютером 30 и ЛВС (локальной вычислительной сетью) 32.

На фиг.3-5 изображена система многоканальной многочастотной микроволновой коммутации. Система микроволновой коммутации представляет собой устройство для двухмерного микроволнового отображения биологических тканей. В общем случае существующие системы коммутации ограничиваются единственным каналом и используются для измерения диэлектрических свойств с использованием пробника с коаксиальным кабелем и сетевым анализатором. Эти измерения не обладают ни точностью, ни чистотой, достаточной, чтобы давать точные результаты замеров. Настоящее изобретение, напротив, предоставляет систему коммутации, которая реализует многоканальные измерения комплексного коэффициента отражения в режиме реального времени на высоком уровне точности. Система коммутации в соответствии с настоящим изобретением включает неагрессивную процедуру измерения в искусственных условиях, использующую вплоть до 6 переключаемых частот от 0,1 до 5 ГГц. Система дополнительно допускает измерения в режиме реального времени и визуализацию. Кроме того, в отличие от систем коммутации, известных из уровня техники, калибровка не требует точного микроволнового оборудования. Управление центральным компьютером 30 предпочтительно осуществлять с помощью интерфейса RS-485 или эквивалентного ему, и для увеличения скорости сбора данных реализуется методика кодового разделения.

Соответственно, на фиг.3 изображен образец экранного отображения MB коммутации для однооконного меню. Зона заголовков меню включает в себя заголовки: файл, вид, калибровка, испытание, окно и помощь. Также предусмотрен выбор различных частот и опций просмотра. Например, экранное отображение, изображенное на фиг.3, показывает IM eps на частоте 1960 МГц, распределенные по каналам.

На фиг.4 изображен образец экранного отображения для калибровки, в котором для данной частоты калибруются среда/среды или импеданс. Зона заголовков меню включает в себя опции выбора частоты и опции просмотра. Калибровка может производиться для всех, одного или более чем одного каналов.

На фиг.5 изображен образец экранного отображения MB коммутации для 4 окон. При такой организации можно расставлять результаты замеров для различных частот и результаты замеров на соответствующих каналах.

Согласно фиг.1 и 2 система 10 трехмерной томографии включает в себя микроволновый генератор, систему сбора данных 26, включающую в себя управляющие процессоры. Кроме того, чтобы иметь возможность избирательно наблюдать и обследовать объект, создается активная антенная решетка наподобие антенных кластеров 16 и система точного позиционирования 29, способная перемещать антенные кластеры 16 вдоль заданных координат. Антенный кластер 16 можно выравнивать вдоль заданной оси и подвергать управлению посредством процессора цифровых сигналов, чтобы одновременно получать 32 картины диаграмм рассеяния. Все передающие антенны одновременно облучают изучаемый объект предпочтительно вертикально поляризованными электромагнитными волнами. Одновременное облучение приводит к суперпозиции электромагнитных полей на приемнике. Для восстановления требуемых диаграмм рассеяния из совокупного сигнала используется способ кодового разделения. Система сбора данных 26 осуществляет функции выборки и фильтрации и реализует методику кодового разделения для обработки совокупных сигналов, поступающих от приемника, и присвоения значений поля с разбросом (амплитуды и фазы) от любых антенн в антенном кластере 18.

Некоторые существенные преимущества настоящего изобретения включают в себя возможности измерения векторного поля во взаимодействии с системой точного позиционирования. Кроме того, для моделирования и параллельного измерения реализуются методики кодового разделения. Создается такое количество приемных антенн, которое достаточно для резких колебаний поля, связанных с рассеянием, обусловленным неоднородностью диэлектрических свойств и интерференцией с падающим полем. Учитывать это обстоятельство в конструкции, числе и ориентации приемных антенн важно для точного измерения фазы сигнала с разбросом. Аналогично число излучателей должно быть достаточным для точного вычисления определителя матрицы при обращении матрицы.

Итак, преимущество настоящего изобретения состоит в объединении системы одночастотной трехмерной микроволновой томографии с системой одночастотной импедансной томографии для отображения объекта. Система полезна при отображении физиологических свойств, в частности, применительно к медицинской диагностике и лечению.

Хотя были продемонстрированы и описаны преимущественные варианты реализации настоящего изобретения, специалистам в данной области техники очевидно, что оно допускает различные изменения и модификации, не выходящие за пределы обобщенных аспектов настоящего изобретения.

Похожие патенты RU2234244C2

название год авторы номер документа
Способ микроволновой томографии сверхвысокого разрешения 2017
  • Булышев Александр Евгеньевич
  • Булышева Лариса Андреевна
RU2662079C1
СИСТЕМЫ И СПОСОБЫ ЧЕТЫРЕХМЕРНОГО ЭЛЕКТРОМАГНИТНОГО ТОМОГРАФИЧЕСКОГО (ЭМТ) ДИФФЕРЕНЦИАЛЬНОГО (ДИНАМИЧЕСКОГО) СМЕШАННОГО ПОСТРОЕНИЯ ИЗОБРАЖЕНИЙ 2011
  • Семенов Сергей Ю.
RU2596984C2
СИСТЕМЫ И СПОСОБЫ ЧЕТЫРЕХМЕРНОГО ЭЛЕКТРОМАГНИТНОГО ТОМОГРАФИЧЕСКОГО (ЭМТ) ДИФФЕРЕНЦИАЛЬНОГО (ДИНАМИЧЕСКОГО) СМЕШАННОГО ПОСТРОЕНИЯ ИЗОБРАЖЕНИЙ 2016
  • Семенов Сергей Ю.
RU2736405C2
МИКРОВОЛНОВОЕ ТОМОГРАФИЧЕСКОЕ УСТРОЙСТВО ДЛЯ СПЕКТРОСКОПИИ И СПОСОБ ЕЕ ОСУЩЕСТВЛЕНИЯ 1995
  • Свенсон Роберт Х.
  • Семенов С.Ю.
  • Баранов В.Ю.
RU2238033C2
СВЧ ТОМОГРАФ 2021
  • Минин Олег Владиленович
  • Минин Игорь Владиленович
RU2777207C1
Устройство для малоракурсной томографической диагностики параметров индуцированных плазменных образований в условиях ближнего космоса 2017
  • Филонин Олег Васильевич
  • Белоконов Игорь Витальевич
  • Петров Михаил Андреевич
RU2675079C1
Система и способ радиочастотной томографии 2022
  • Зайцев Дмитрий Феоктистович
RU2769968C1
НОСИМАЯ/ПЕРЕНОСНАЯ УСТАНОВКА ЭЛЕКТРОМАГНИТНОЙ ТОМОГРАФИИ 2014
  • Семенов, Сергей, Ю.
RU2603613C1
НОСИМАЯ/ПЕРЕНОСНАЯ УСТАНОВКА ЭЛЕКТРОМАГНИТНОЙ ТОМОГРАФИИ 2014
  • Семенов Сергей Ю.
RU2735283C2
МОДУЛЬНАЯ ЭЛЕКТРОДНАЯ СИСТЕМА ДЛЯ ТРЕХМЕРНОЙ ЭЛЕКТРОИМПЕДАНСНОЙ ТОМОГРАФИИ 2020
  • Алексанян Грайр Каренович
  • Горбатенко Николай Иванович
  • Кучер Артем Игоревич
  • Кацупеев Андрей Александрович
  • Щербаков Иван Дмитриевич
  • Игнатьев Павел Сергеевич
RU2757963C1

Иллюстрации к изобретению RU 2 234 244 C2

Реферат патента 2004 года ЭЛЕКТРОМАГНИТНЫЕ ОТОБРАЖАЮЩИЕ И ЛЕЧЕБНЫЕ (ЭМОЛ) СИСТЕМЫ

Изобретение используется в медицинской технике, в частности в системах медицинской томографии для отображения крупных биологических объектов. Микроволновое томографическое устройство содержит, по меньшей мере, один импедансный электрод и, по меньшей мере, один импедансный приемопередатчик, систему сбора данных, связанную с ними, блок общего управления и центральный компьютер, при этом, по меньшей мере, одна микроволновая антенна соединена с, по меньшей мере, одним импедансным электродом с образованием антенного кластера, по меньшей мере, один микроволновый приемопередатчик соединен с, по меньшей мере, одним импедансным приемопередатчиком, с образованием приемопередающего кластера, при этом упомянутые антенный и приемопередающий кластеры электрически связаны между собой системой сбора данных, блоком общего управления и компьютером, а кластеры смонтированы с возможностью их регулирования системой точного позиционирования. Способ обработки сигналов методом кодового разделения, реализуемый в микроволновом томографическом устройстве, имеющем систему одночастотной трехмерной микроволновой томографии, взаимодействующую с одночастотной трехмерной импедансной системой, при этом осуществляют сбор данных диаграммы рассеяния из совокупности сигналов, осуществляют выборку и фильтрацию и присвоение значений поля с разбросом. Система микроволновой коммутации, предназначенная для поверхностного отображения биологических систем содержит средство отображения многоканальных данных, совокупность зон заголовков меню, включающих в себя заголовки: файл, вид, калибровка, испытание и отображение и упомянутые многоканальные данные и упомянутые зоны заголовков меню, отображающиеся, по меньшей мере, на одном экране окна. Использование изобретения позволяет обеспечить внутреннее отображение в режиме реального времени физиологических свойств и временных изменений тканей. 3 с. и 2 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 234 244 C2

1. Микроволновое томографическое устройство, содержащее, по меньшей мере, один импедансный электрод и, по меньшей мере, один импедансный приемопередатчик, систему сбора данных, связанную с ними, блок общего управления и центральный компьютер, отличающееся тем, что, по меньшей мере, одна микроволновая антенна соединена с, по меньшей мере, одним импедансным электродом с образованием антенного кластера, по меньшей мере, один микроволновый приемопередатчик соединен с, по меньшей мере, одним импедансным приемопередатчиком, с образованием приемопередающего кластера, при этом упомянутые антенный и приемопередающий кластеры электрически связаны между собой системой сбора данных, блоком общего управления и компьютером, а кластеры смонтированы с возможностью их регулирования системой точного позиционирования.2. Устройство по п.1, отличающееся тем, что система точного позиционирования объединена с упомянутым антенным кластером и упомянутым приемопередающим кластером с возможностью обеспечения точной ориентации упомянутого антенного кластера и упомянутого приемопередающего кластера вблизи биологического объекта, для облучения и приема от него сигналов.3. Способ обработки сигналов методом кодового разделения, реализуемый в микроволновом томографическом устройстве, имеющем систему одночастотной трехмерной микроволновой томографии, взаимодействующую с одночастотной трехмерной импедансной системой, и способном отображать крупный биологический объект, при этом осуществляют сбор данных диаграммы рассеяния из совокупности сигналов, осуществляют выборку и фильтрацию, и присвоение значений поля с разбросом.4. Система микроволновой коммутации, предназначенная для поверхностного отображения биологических систем, реализуемая в микроволновом томографическом устройстве, имеющем систему одночастотной трехмерной микроволновой томографии, взаимодействующую с одночастотной трехмерной импедансной системой, и способном отображать крупный биологический объект, содержит средство отображения многоканальных данных, совокупность зон заголовков меню, включающих в себя заголовки файл, вид, калибровка, испытание и отображение и упомянутые многоканальные данные и упомянутые зоны заголовков меню, отображающиеся, по меньшей мере, на одном экране окна.5. Система микроволновой коммутации по п.4, отличающаяся тем, что упомянутые многоканальные данные относятся к измерениям коэффициента отражения в режиме реального времени.

Документы, цитированные в отчете о поиске Патент 2004 года RU2234244C2

US 5184624 А, 09.02.1993
US 5404292 А, 04.04.1995
СИСТЕМА И СПОСОБ ОБРАБОТКИ РАДИАЦИОННОЙ ТЕРАПИИ ДЛЯ ОБЛУЧЕНИЯ СУБЪЕКТА 1991
  • Ровен Аврахам Цирюльник[Us]
RU2091093C1

RU 2 234 244 C2

Авторы

Свенсон Роберт Х.

Семенов С.Ю.

Баранов В.Ю.

Даты

2004-08-20Публикация

1998-05-22Подача