Изобретение относится к области вакуумной техники, в частности - к механическим вакуумным насосам.
Известны механические турбомолекулярные вакуумные насосы, включающие в себя цилиндрический корпус, разделенный статорными колесами, и ротор с набором роторных колес, у которых роторные и статорные колеса выполнены в виде дисков с косыми радиальными пазами [1].
Недостатками таких насосов являются сравнительно невысокий коэффициент компрессии одной ступени, значительные габариты и масса насоса, низкое выходное давление.
За прототип взят механический вакуумный насос типа ТМН-500, включающий в себя цилиндрический корпус, разделенный статорными колесами, и ротор с набором роторных колес, у которого роторные и статорные колеса выполнены в виде дисков с косыми радиальными лопатками [1].
По принципу действия этот насос представляет собой многоступенчатый роторный компрессор с осевой компрессией. Его недостатки, так же как и у всех турбомолекулярных насосов, следующие:
- сравнительно невысокий коэффициент компрессии одной ступени (α≈1,5-4), что приводит к необходимости наличия большого числа ступеней, а следовательно, к увеличению габаритов и массы насоса;
- низкое выходное давление, порядка 10-1-1 Па, вследствие чего при использовании таких насосов необходима комплектация их с форвакуумными насосами, имеющими масляное уплотнение, что создает проблемы в особо чистых вакуумных технологиях.
Целью предлагаемого изобретения является улучшение откачных характеристик насоса за счет повышения коэффициента компрессии каждой ступени и в результате повышение выходного давления насоса.
Поставленная задача решается за счет того, что в насосе, содержащем цилиндрический корпус со статорными колесами и ротор с набором роторных колес, роторные колеса выполнены в виде радиальных крыльчаток, закрытых с двух сторон дисками, причем один из дисков выполнен с центральным отверстием, диаметр которого равен 0,2-0,3 диаметра роторного колеса, а статорные колеса выполнены в виде дисков с односторонним радиальным оребрением и центральным отверстием примерно такого же диаметра, как и диаметр отверстия диска ротора, причем расположены так, что расстояние между неоребренной поверхностью статорного колеса и диском ротора, имеющим отверстие, не превышает 1,0-2,5 мм. Оребрение и лопасти крыльчаток выполнены изогнутыми по спирали в направлении, противоположном направлению вращения.
Отличительными признаками предлагаемого насоса является выполнение роторных колес в виде радиальных крыльчаток, закрытых с двух сторон дисками, один из которых выполнен с центральным отверстием, диаметр которого равен 0,2-0,3 диаметра роторного колеса, а статорных колес в виде дисков с односторонним профилированным радиальным оребрением и центральным отверстием, совпадающим по диаметру с отверстием диска ротора. Причем оребрение и лопасти крыльчаток выполнены изогнутыми по спирали в направлении, противоположном направлению вращения. Система радиальных ребер и центральных отверстий на статорных колесах и роторных дисках создает каналы для перетока газа. Фактически для откачки газа используется центробежный эффект. Газ, попавший в указанные каналы за счет центробежной силы отбрасывается к наружным стенкам насоса, сжимается и откачивается следующей ступенью.
Благодаря наличию этих признаков уменьшается обратное перетекание газа, что позволяет увеличить коэффициент компрессии каждой ступени и, как следствие, обеспечить работу насоса при выходном давлении >105 Па без форвакуумного насоса. Кроме того, повышение коэффициента компрессии каждой ступени позволяет сократить количество ступеней, что приводит к снижению габаритов и массы насоса, т.е. снижению его металлоемкости и себестоимости.
Для предотвращения осевой нагрузки на подшипники ротора входной патрубок расположен посередине корпуса, а выходные патрубки - по краям. Такое решение позволяет разместить подшипники вне корпуса без сальников, т.е. позволяет проводить полностью безмасляную откачку.
На фиг.1 приведен продольный разрез предлагаемого насоса; на фиг.2 и фиг.3 - два поперечных сечения А-А и Б-Б на фиг.1.
Вакуумный газоротационный насос содержит цилиндрический корпус 1, статорные колеса 2 с односторонним радиальным оребрением 3, расположенный соосно внутри корпуса ротор 4 с набором крыльчаток 5, закрытых с одной стороны сплошным диском 6, а с другой стороны диском 7 с центральным отверстием 8 напротив центрального отверстия 9 в статорном колесе 2, входной патрубок 10, расположенный посередине корпуса 1, и два выходных патрубка 11, расположенных по краям корпуса 1, пневмоподшипники 12, расположенные вне корпуса. При вращении ротора в секторных каналах крыльчатки под действием центробежной силы возникает радиальный переток газа от оси к периферии. При этом давление в приосевой области понижается до некоторого значения Р0, а на периферии повышается до Pr. В поле центробежных сил зависимость давления газа от радиуса вращения имеет вид:
где R - радиус крыльчатки,
р0 - давление в приосевой области,
Pr - давление на периферии крыльчатки,
m - молекулярная масса газа,
ω - круговая частота вращения крыльчатки.
Коэффициент компрессии в каждой крыльчатке
Во время вращения за счет вязкости газа он будет работать как молекулярный насос типа “бегущая стенка”, и обратное перетекание газа будет существенно уменьшено. В зоне статорных колес ротация газа прекращается и возникает переток газа по направляющим ребрам от периферии к оси, где через центральные отверстия в диске статорного колеса и диске ротора газ поступает в следующую секцию. Это позволяет повысить коэффициент компрессии одной ступени до величин порядка 103. И при скорости вращения более 30000 об/мин и заданном выходном давлении, равном атмосферному, а входному давлению 10-7 Па необходимое количество ступеней будет равно 5 против 19 в прототипе, в котором выходное давление всего 1 Па. Таким образом, предлагаемая конструкция насоса позволяет:
- увеличить выходное давление до величин больше, чем 105 Па без применения форвакуумного насоса;
- снизить число ступеней, т.е. габариты и стоимость насоса, благодаря повышению коэффициента компрессии одной ступени до 103;
- работать с запыленными и агрессивными газами, благодаря полному отсутствию трущихся поверхностей;
- получить достаточно высокие скорости откачки при сравнительно небольших габаритах насоса;
- обеспечить полностью безмасляную откачку и равномерную осевую нагрузку за счет наличия входного патрубка в центре корпуса и двух выходных патрубков по краям корпуса, благодаря чему возможно расположение пневмодшипников и привода вне корпуса.
Литература
1. Вакуумная техника. Справочник. / Е.С. Фролов, В.Е. Минайчева, А.Т. Александрова и др.; под общ. ред. Е.С. Фролова и В.Е. Минайчева. М.:, Машиностроение, 1985. - 360 с.
название | год | авторы | номер документа |
---|---|---|---|
ТЕПЛОВОЙ НАСОС | 2007 |
|
RU2382295C2 |
ДВУХПОТОЧНЫЙ ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС С ГИБРИДНЫМИ ПРОТОЧНЫМИ ЧАСТЯМИ | 2014 |
|
RU2543917C1 |
ТУРБОМОЛЕКУЛЯРНЫЙ НАСОС С ОДНОПОТОЧНОЙ ТУРБОМОЛЕКУЛЯРНОЙ ПРОТОЧНОЙ ЧАСТЬЮ | 2012 |
|
RU2490519C1 |
ОДНОПОТОЧНЫЙ ЧЕТЫРЕХСТУПЕНЧАТЫЙ ТУРБОМОЛЕКУЛЯРНЫЙ НАСОС | 2014 |
|
RU2560133C1 |
ВЫСОКОВАКУУМНЫЙ ГИБРИДНЫЙ НАСОС | 2012 |
|
RU2561514C2 |
ВЕРТИКАЛЬНЫЙ НАСОС | 1990 |
|
RU2005919C1 |
УСТРОЙСТВО ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ | 2005 |
|
RU2298528C2 |
ТУРБОБУР-РЕДУКТОР | 2002 |
|
RU2198994C1 |
Вакуумная центрифуга | 2017 |
|
RU2631951C1 |
ВАКУУМНЫЙ ГИДРОКОЛЬЦЕВОЙ НАСОС | 2002 |
|
RU2240445C2 |
Изобретение относится к области вакуумной техники, в частности к механическим вакуумным насосам, и содержит цилиндрический корпус, разделенный поперечными статорными колесами, и ротор с набором роторных колес, выполненных в виде радиальных крыльчаток, закрытых с двух сторон дисками, причем один из дисков имеет центральное отверстие, совпадающее по диаметру с отверстием в статорном колесе, выполненном в виде диска с односторонним профилированным оребрением. Причем лопасти крыльчатки роторного колеса и оребрение статорного колеса выполнены со спиральным изгибом в противоположную от направления вращения сторону. Это позволяет улучшить откачные характеристики насоса за счет повышения коэффициента компрессии каждой ступени. 3 ил.
Вакуумный газоротационный насос, содержащий цилиндрический корпус, разделенный поперечными статорными колесами, и ротор с набором роторных колес, отличающийся тем, что роторные колеса выполнены в виде радиальных крыльчаток, закрытых с двух сторон дисками, а статорные колеса выполнены в виде дисков с центральным отверстием и односторонним оребрением, причем один из дисков роторного колеса имеет центральное отверстие, совпадающее по диаметру с отверстием диска статорного колеса и равным 0,2-0,3 диаметра крыльчатки, расстояние между неоребренной поверхностью статорного колеса и диском роторного колеса с центральным отверстием не превышает 1,0-2,5 мм, а оребрение статорных колес и лопасти крыльчаток роторного колеса выполнены со спиральным изгибом в противоположную от направления вращения сторону.
ФРОЛОВ Е.С | |||
и др | |||
Вакуумная техника | |||
Справочник | |||
- М.: Машиностроение, 1985, с.206-227 | |||
Осевой вентилятор | 1983 |
|
SU1108245A1 |
Осевой вентилятор | 1988 |
|
SU1537895A1 |
ПРИБОРНЫЙ ШКАФ | 1998 |
|
RU2145157C1 |
ПДТСНТЯЙ- <,.;(Т5;х;!КчШ'Д«г ^- I кнвлйотыа | 0 |
|
SU263000A1 |
US 4895489 А, 23.01.1990. |
Авторы
Даты
2004-10-10—Публикация
2003-02-03—Подача