Вакуумная центрифуга Российский патент 2017 года по МПК B04B3/00 B04B15/08 

Описание патента на изобретение RU2631951C1

Изобретение относится к центробежным устройствам для разделения суспензий, содержащих в качестве твердой фазы компоненты, чувствительные к механическим воздействиям, и может быть использовано, например, при утилизации боеприпасов методом вымывания заряда, - в процессах отделения вымываемых из каморы/корпуса боеприпаса взрывчатых или иных составляющих заряд веществ, от рабочей жидкости, а также в микробиологических производствах, - при отделении мицелиальных культур от культуральных жидкостей.

Известен ряд конструкций центрифуг, работающих в разреженной газовой среде, использующих для вакуумирования полостей непосредственно энергию вращения барабана/ротора центрифуги. Так, например, в устройстве /1/ вакуумирование полостей достигается посредством струйного насоса, работа которого осуществляется за счет перераспределения потоков и движения жидкости по встроенной отдельной гидравлической системе.

Недостатком данного устройства, в первую очередь, является сложность гидравлической схемы, реализующей работу струйного насоса, а относительно к предлагаемой области применения - пригодность в использовании только для непрерывных процессов, причем полное вакуумирование как приемной, так и выходной полостей делает невозможным использования для разделения и осушки твердой составляющей суспензии межполостного перепада воздушного/газового давления.

Наиболее близкой к предлагаемому изобретению по технической сущности и достигаемому результату является конструкция вакуумной центрифуги /2/, содержащая внешний корпус, размещенный внутри него на приводном валу барабан и встроенный турбомолекулярный насос, роторные ступени которого закреплены на приводном валу со стороны придонной части барабана, а статорные - на внешнем корпусе. Также в конструкции предусмотрено наличие насоса предварительного разряжения (форвакуумного), необходимого для обеспечения на выходе из последней ступени турбомолекулярного насоса молекулярного режима течения газа, соединенного отдельным патрубком с полостью внешнего корпуса.

Таким образом, в данной конструкции центрифуги вакуумирование ее полости осуществляется посредством турбинного аппарата встроенного турбомолекулярного насоса, привод которого совмещен с приводом барабана центрифуги.

Однако данная конструкция также не лишена отдельных недостатков:

- в случае использования ее в качестве фильтрующей, не предусмотрен (судя по описанию и иллюстрациям источника /2/) отвод фильтрата иначе, как непосредственно через турбинный аппарат, что будет отрицательно сказываться на его работе;

- как и в конструкции-аналоге /1/, полное вакуумирование как приемной, так и выходной полостей делает невозможным использование межполостного перепада воздушного/газового давления для разделения и осушки твердой составляющей суспензии;

- потребность в дополнительном насосе предварительного разрежения.

Технической задачей предлагаемого изобретения является устранение вышеупомянутых недостатков и обеспечение условий использования для разделения и осушки твердой составляющей суспензии наряду с центробежным фактором, также и межполостного перепада воздушного/газового давления.

Решение поставленной технической задачи достигается тем, что в известной вакуумной центрифуге, содержащей внешний корпус, размещенный внутри него на приводном валу перфорированный барабан и встроенный турбомолекулярный насос, в соответствии с изобретением роторные ступени турбомолекулярного насоса закреплены на обечайке барабана вблизи его загрузочного отверстия, а статорные выполнены разъемными и установлены минимум на двух отдельных фрагментах обечайки внешнего корпуса, выполненных с возможностью герметичной стыковки между собой и внешним корпусом с образованием замкнутой поверхности вращения и снабженных приводами плоскопараллельного перемещения относительно оси вращения барабана, при этом контуры радиальных сечений загрузочного отверстия барабана и охватывающей его с зазором поверхности вращения, образованной отдельными фрагментами обечайки внешнего корпуса, выполнены по профилю кольцевого сопла Лаваля, а в приемной полости центрифуги между внешним корпусом и барабаном перед роторными ступенями турбомолекулярного насоса дополнительно установлены каплеотбойные устройства, закрепленные на внешнем корпусе.

Размещение роторных ступеней турбомолекулярного насоса на обечайке барабана вблизи его загрузочного отверстия позволит осуществлять отвод фильтрата не через турбинный аппарат, а из приемной полости центрифуги.

Отдельные фрагменты обечайки внешнего корпуса при взаимной герметичной стыковке между собой и внешним корпусом барабана образуют замкнутую поверхность вращения и, по сути, одновременно являются как частью внешнего корпуса центрифуги, так и корпусом турбомолекулярного насоса. Т.к. на них закреплены разъемные статорные ступени турбомолекулярного насоса, в данном случае насос будет находиться в рабочем состоянии. Благодаря наличию приводов плоскопараллельного перемещения относительно оси вращения барабана эти фрагменты, совместно с закрепленными на них разъемными статорными ступенями насоса, могут расстыковываться, вплоть до полного выхода последних из зазоров между роторными ступенями. В этом случае, т.е. при расстыковке всех вышеуказанных элементов конструкции, насос «лишается» корпуса и статорных ступеней, вследствие чего перестает выполнять свои функции - фактически отключается.

Таким образом, исполнение статорных ступеней турбомолекулярного насоса разъемными и их установка минимум на двух отдельных фрагментах обечайки внешнего корпуса, выполненных с возможностью герметичного совмещения между собой и внешним корпусом с образованием замкнутой поверхности вращения, при обеспечении их приводами плоскопараллельного перемещения относительно оси вращения барабана позволит осуществлять регулирование (включение/отключение) процесса вакуумирования приемной полости центрифуги.

Для обеспечения работоспособности турбомолекулярного насоса часто необходимо обеспечить на выходе из его последней ступени молекулярный режим течения газа любым насосом предварительного разрежения (форвакуумным насосом) с выхлопом в атмосферу.

Сопло Лаваля представляет собой канал особого профиля, суженный в середине, в простейшем случае состоящий из пары усеченных конусов, сопряженных узкими концами. Кольцевое же кольцо Лаваля получается путем установки по оси классического сопла осесимметричного тела вращения. Проходящий по соплу Лаваля воздушный/газовый поток может быть разогнан до высоких, вплоть до сверхзвуковых, скоростей. Таким образом, в соответствии с законом Бернулли, на выходе из сопла Лаваля за счет высокой скорости газового потока можно получить низкое давление. Таким образом выполнение в предложенной конструкции центрифуги контуров радиальных сечений загрузочного отверстия барабана и охватывающей его с зазором поверхности вращения, образованной отдельными фрагментами обечайки внешнего корпуса, по профилю кольцевого сопла Лаваля позволяет исключить потребность в насосе предварительного разряжения (форвакуумном).

И, наконец, наличие каплеотбойных устройств, например сетчатых или уголковых, закрепленных в приемной полости центрифуги на внешнем корпусе, т.е. между внешним корпусом и барабаном, перед роторными ступенями турбомолекулярного насоса, позволит избежать попадания капель фильтрата в его турбинный аппарат.

Центрифугу наиболее целесообразно использовать в горизонтальном исполнении, т.к. в этом случае на внутренней поверхности барабана будет получаться слой осадка равной толщины, что положительно скажется при его осушке в режиме работы с вакуумированием приемной полости. Режим работы - циклический.

Изобретение поясняется следующей графической информацией.

На фиг. 1 изображена принципиальная схема горизонтальной центрифуги (вид сверху) при "включенном" турбомолекулярном насосе.

На фиг. 2 - при "отключенном" турбомолекулярном насосе.

На фиг. 3, 4 - схематичные виды со стороны загрузочного отверстия барабана, также при "отключенном" турбомолекулярном насосе, при различных исполнениях приводов плоскопараллельного перемещения фрагментов обечайки внешнего корпуса с разъемными статорными ступенями турбомолекулярного насоса.

Центрифуга (фиг. 1, 2) содержит внешний корпус 1, внутри которого на приводном валу 2 размещен перфорированный барабан 3 и встроенный турбомолекулярный насос. Роторные ступени турбомолекулярного насоса 4 закреплены на обечайке барабана 3 вблизи его загрузочного отверстия, а статорные 5 выполнены разъемными и установлены минимум на двух отдельных фрагментах обечайки 6 внешнего корпуса. Фрагменты обечайки 6 выполнены с возможностью герметичной стыковки между собой и внешним корпусом 7 с образованием замкнутой поверхности вращения и снабжены приводами плоскопараллельного перемещения 8 относительно оси вращения барабана. Контуры радиальных сечений загрузочного отверстия барабана 3 и охватывающей его с зазором поверхности вращения, образованной фрагментами обечайки 6 внешнего корпуса 1, выполнены по профилю кольцевого сопла Лаваля 9, в приемной полости центрифуги между внешним корпусом 1 и барабаном 3 перед роторными ступенями 4 турбомолекулярного насоса дополнительно установлены каплеотбойные устройства 10, закрепленные на внешнем корпусе 1. Приводной вал 2 снабжен опорным подшипниковым узлом 11. На входе приводного вала 2 во внешний корпус 1 смонтировано уплотнительное устройство 12. Отбор фильтрата из приемной полости центрифуги осуществляется через клапан патрубка 13 (фиг. 3, 4).

На фиг. 1 фрагменты обечайки 6 посредством приводов плоскопараллельного перемещения 8 герметично состыкованы между собой и внешним корпусом центрифуги 1. Закрепленные на них статорные ступени турбомолекулярного насоса 5 находятся в зазорах между роторными ступенями 4. Контуры радиальных сечений загрузочного отверстия барабана 3 и охватывающей его с зазором поверхности вращения, образованной фрагментами обечайки 6 внешнего корпуса 1, формируют при стыковке профиль кольцевого сопла Лаваля 9. Турбомолекулярный насос "включен".

На фиг. 2…4 - фрагменты обечайки 6 посредством приводов плоскопараллельного перемещения 8 расстыкованы между собой и отстыкованы от внешнего корпуса центрифуги 1. Закрепленные на них статорные ступени турбомолекулярного насоса 5 выдвинуты из зазоров между роторными ступенями 4. Кольцевое сопло Лаваля отсутствует. Турбомолекулярный насос "выключен" (Для упрощения изображения приводы плоскопараллельного перемещения с поворотом на фиг. 4 условно не показаны).

Работа центрифуги осуществляется циклично в несколько стадий следующим образом.

1 - При условно "выключенном" турбомолекулярном насосе (фиг. 2, 3) на внутренней поверхности приводного барабана 3 закрепляется фильтрующий элемент (ткань, сетка и т.п.).

2 - Посредством приводного вала 2 размещенный во внешнем корпусе 1 перфорированный барабан 3 приводится во вращение.

3 - При достижении заданной частоты вращения в полость барабана 3 подается расчетное количество фильтруемой суспензии (например, вымытого при расснаряжении фосфорного боеприпаса из его корпуса красного фосфора совместно с водой). Под действием центробежного эффекта суспензия равномерно распределяется по внутренней поверхности стенки барабана 3 и часть воды сквозь фильтрующий элемент и перфорированную стенку барабана 3 попадает в приемную полость центрифуги - между внешним корпусом 1 и барабаном 3, откуда непрерывно удаляется через клапан патрубка 13 (фиг. 3, 4).

4 - Без прекращения вращения барабана, клапан патрубка 13 перекрывается и включаются приводы плоскопараллельного перемещения 8 (фиг. 1, 2). Осуществляется герметичная стыковка фрагментов обечайки 6 между собой и внешним корпусом центрифуги 1, одновременно закрепленные на них статорные ступени турбомолекулярного насоса 5 входят в зазоры между роторными ступенями 4, а контуры радиальных сечений загрузочного отверстия барабана 3 и охватывающей его с зазором поверхности вращения, образованной фрагментами обечайки 6 внешнего корпуса 1, формируют профиль кольцевого сопла Лаваля 9 (по завершении стыковки приводы 8, естественно, отключаются). Турбомолекулярный насос "включается" в работу и осуществляет вакуумирование приемной полости центрифуги, благодаря чему, наряду с центробежным фактором, за счет межполостного перепада воздушного/газового давления осуществляется окончательное разделение и осушка твердой составляющей суспензии до заданной влажности. Возможному попаданию капель фильтрата в турбинный аппарат турбомолекулярного насоса и уносу их во внешнюю среду препятствую каплеотбойные устройства 10.

5 - Реверсно включаются приводы плоскопараллельного перемещения 8 (фиг. 1, 2). Осуществляется расстыковка фрагментов обечайки 6 между собой и их отстыковка от внешнего корпуса центрифуги 1. Одновременно закрепленные на них статорные ступени турбомолекулярного насоса 5 выходят из зазоров между роторными ступенями 4, а также осуществляется "расформирование" кольцевого сопла Лаваля 9 (по завершении расстыковки приводы 8, естественно, отключаются). Турбомолекулярный насос из работы "выключается". Из приемной полости центрифуги через клапан патрубка 13 (фиг. 3, 4) удаляются остатки фильтрата.

6 - Отфильтрованная и осушенная твердая составляющая суспензии удаляется из барабана 3 известными техническими устройствами, например посредством ножа, без прекращения вращения барабана, после чего стадии 3…5 повторяются.

Таким образом, предложенная конструкция центрифуги при применении ее для разделения суспензий, содержащих в качестве твердой фазы компоненты, чувствительные к механическим воздействиям, предотвращает удаление фильтрата через турбинный аппарат турбомолекулярного насоса, наряду с центробежным фактором дополнительно использует межполостной перепад воздушного/газового давления для разделения и осушки твердой составляющей суспензии, а также исключает потребность в дополнительном насосе предварительного разрежения.

Источники информации

1. Патент WO 2014016125 (A1) Separator arrangement (Separator-anordnung), B04В 15/08, 2014.

2. Патент США US 3822823 (A) Vacuum centrifuge, В04В 15/08, 1974 (прототип).

Похожие патенты RU2631951C1

название год авторы номер документа
Турбомолекулярный вакуумный насос 1985
  • Фролов Евгений Сергеевич
  • Никулин Николай Константинович
SU1268819A1
ТУРБОМОЛЕКУЛЯРНЫЙ НАСОС С ОДНОПОТОЧНОЙ ТУРБОМОЛЕКУЛЯРНОЙ ПРОТОЧНОЙ ЧАСТЬЮ 2012
  • Сергеев Владимир Павлович
  • Козлов Николай Иванович
RU2490519C1
Турбомолекулярный вакуумный насос 1988
  • Демихов Константин Евгеньевич
  • Басова Татьяна Александровна
  • Бурлингас Юрий Вацлавович
SU1550222A1
ВЫСОКОВАКУУМНЫЙ ГИБРИДНЫЙ НАСОС 2012
  • Рунев Вячеслав Владимирович
RU2561514C2
ВЕРТИКАЛЬНЫЙ НАСОС 1990
  • Глухов Н.П.
  • Годисов О.Н.
RU2005919C1
ЦЕНТРИФУГА С ВЫВОРАЧИВАЕМЫМ ФИЛЬТРОМ 1997
  • Гертайз Ханс
RU2188081C2
ДВУХПОТОЧНЫЙ ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС С ГИБРИДНЫМИ ПРОТОЧНЫМИ ЧАСТЯМИ 2014
  • Сергеев Владимир Павлович
  • Воронин Александр Геннадьевич
RU2543917C1
ОДНОПОТОЧНЫЙ ЧЕТЫРЕХСТУПЕНЧАТЫЙ ТУРБОМОЛЕКУЛЯРНЫЙ НАСОС 2014
  • Воронин Александр Геннадьевич
  • Сергеев Владимир Павлович
RU2560133C1
Установка для рафинации масел 1987
  • Шевельков Виктор Васильевич
  • Аскинази Анна Ильинична
  • Бакланов Вадим Алексеевич
SU1477737A1
Двухступенчатый турбомолекулярный насос 1987
  • Скоркин Анатолий Сергеевич
SU1516625A1

Иллюстрации к изобретению RU 2 631 951 C1

Реферат патента 2017 года Вакуумная центрифуга

Изобретение относится к центробежным устройствам для разделения суспензий, содержащих в качестве твердой фазы компоненты, чувствительные к механическим воздействиям, и может быть использовано, например, при утилизации боеприпасов методом вымывания заряда в процессах отделения вымываемых из каморы/корпуса боеприпаса взрывчатых или иных составляющих заряд веществ от рабочей жидкости, а также в микробиологических производствах при отделении мицелиальных культур от культуральных жидкостей. Центрифуга содержит внешний корпус, внутри которого на приводном валу размещен перфорированный барабан и встроенный турбомолекулярный насос. Роторные ступени турбомолекулярного насоса закреплены на обечайке барабана вблизи его загрузочного отверстия, а статорные выполнены разъемными и установлены минимум на двух отдельных фрагментах обечайки внешнего корпуса. Фрагменты обечайки выполнены с возможностью герметичной стыковки между собой и внешним корпусом с образованием замкнутой поверхности вращения и снабжены приводами плоскопараллельного перемещения относительно оси вращения барабана. Контуры радиальных сечений загрузочного отверстия барабана и охватывающей его с зазором поверхности вращения, образованной фрагментами обечайки внешнего корпуса, выполнены по профилю кольцевого сопла Лаваля. В приемной полости центрифуги между внешним корпусом и барабаном перед роторными ступенями турбомолекулярного насоса дополнительно установлены каплеотбойные устройства, закрепленные на внешнем корпусе. Техническим результатом является предотвращение удаления фильтрата через турбинный аппарат турбомолекулярного насоса, а также повышение степени разделения и осушки твердой составляющей суспензии за счет межполостного перепада воздушного давления. 4 ил.

Формула изобретения RU 2 631 951 C1

Вакуумная центрифуга, содержащая внешний корпус, размещенный внутри него на приводном валу перфорированный барабан и встроенный турбомолекулярный насос, отличающаяся тем, что роторные ступени турбомолекулярного насоса закреплены на обечайке барабана вблизи его загрузочного отверстия, а статорные выполнены разъемными и установлены минимум на двух отдельных фрагментах обечайки внешнего корпуса, выполненных с возможностью герметичной стыковки между собой и внешним корпусом с образованием замкнутой поверхности вращения и снабженных приводами плоскопараллельного перемещения относительно оси вращения барабана, при этом контуры радиальных сечений загрузочного отверстия барабана и охватывающей его с зазором поверхности вращения, образованной фрагментами обечайки внешнего корпуса, выполнены по профилю кольцевого сопла Лаваля, а в приемной полости центрифуги между внешним корпусом и барабаном перед роторными ступенями турбомолекулярного насоса дополнительно установлены каплеотбойные устройства, закрепленные на внешнем корпусе.

Документы, цитированные в отчете о поиске Патент 2017 года RU2631951C1

US 3822823 A, 09.07.1974
WO 2003086571 A1, 23.10.2003
ЦЕНТРИФУГА С ВЫВОРАЧИВАЕМЫМ ФИЛЬТРОМ 1997
  • Гертайз Ханс
RU2188081C2
RU 2014142175 A, 20.05.2016
US 4997575, 05.03.1991
US 4108620 A, 22.08.1978.

RU 2 631 951 C1

Авторы

Колтунов Владимир Валентинович

Русинова Татьяна Витальевна

Онищенко Олег Евгеньевич

Сидорин Павел Сергеевич

Филимонов Виктор Сергеевич

Ватутин Николай Михайлович

Касаткин Андрей Витальевич

Сидорова Мария Александровна

Даты

2017-09-29Публикация

2017-01-19Подача