Настоящее изобретение относится к области криогенной техники, а именно, технике и технологии ожижения природного газа.
Для производства сжиженного природного газа предложены и в промышленном масштабе успешно применяются технологические процессы, основанные на рекуперативном дроссельном цикле ожижения газа высокого давления (Р>2 МПа) [1].
Эффективность ожижения повышают, вводя в схему ожижительной установки вспомогательные холодильные контуры, содержащие холодильные машины. В них в качестве внешнего хладагента для охлаждения прямого потока газа используют индивидуальные углеводороды или их смеси, а также фреоны [2].
При простоте технического построения основньм недостатком их практической реализации является высокая величина удельных энергозатрат на производство единицы товарной продукции, которая измеряется в пределах 0,9-1 кВт·час/кг.
Последнее связано с необходимостью потребления электроэнергии из сети для привода компрессоров холодильной машины, ее вспомогательных систем (масляные насосы, вентиляторы воздушного охлаждения конденсатора и т.д.).
Перечисленные дополнительные энергозатраты исключают, используя в качестве вспомогательного источника холода поток газа, охлажденного в вихревой трубе. Этот поток газа направляют в предварительный теплообменник установки для дополнительного охлаждения основной части потока ожижаемого газа с последующим его отводом в обратный поток [3] - прототип.
Однако в данном способе при относительно высокой экономичности коэффициент ожижения лишь в 1,2-1,8 раза превышает коэффициент ожижения при простом дроссель-рекуперативном способе ожижения.
Это связано с тем, что поступающий в сопловый ввод вихревой трубы поток газа выходит из нее охлажденным на 20-35°С [4, 5].
С целью повышения эффективности ожижения газа предлагается способ, в котором дополнительный холодный поток газа создают путем охлаждения по крайней мере в одном вспомогательном теплообменнике за счет холода, вырабатываемого по крайней мере в одной вихревой трубе, и последующего дросселирования газа от начального высокого давления до давления обратного потока.
Эффективность предлагаемого способа может быть дополнительно увеличена с помощью эжектора, на вход которого подают поток газа с выхода вспомогательных теплообменников и горячий поток газа с выхода вихревых труб, а в качестве активного газа используется газ с давлением, выше чем давление обратного потока.
Принципиальная технологическая схема реализации предлагаемого способа с использованием технологических особенностей газоредуцирующей и автогазонаполнительной компрессорной станций (ГРС И АГНКС) приведена на фиг.1.
На фиг.2 приведена принципиальная технологическая схема реализации предлагаемого способа, представленная на фиг.1, дополненная включением в схему эжектора.
Газ низкого давления (0,3<Р<1,0 МПа) поступает на вход компрессора АГНКС (точка 0), где сжимается до давления 15<Р<20 МПа (точка 1).
Затем он охлаждается в рекуперативном предварительном теплообменнике Т1 (точка 2) потоком несжижившегося газа низкого давления и дополнительным холодным потоком газа, подключенным к потоку несжижившегося газа низкого давления в точке 7.
Окончательное охлаждение сжатого газа происходит в основном рекуперативном теплообменнике Т2 (точка 3) парами сжиженного природного газа (точка 6), после чего он дросселируется (точка 4) и разделяется в конденсатосборнике КС на две составляющие сжиженный природный газ (точка 5) и несжижившийся в цикле газ низкого давления (точка 6).
Отработавший в цикле ожижения поток газа направляется обратно на вход компрессора (точка 0) и выход ГРС (точка 10).
Холодный поток газа для дополнительного охлаждения газа высокого давления создают следующим образом.
Газ высокого давления (2<Р<6 МПа) с входа ГРС поступает на вход вспомогательного контура охлаждения (точка 9) и разделяется на два потока.
Во вспомогательных теплообменниках Т01-Т02 и, расширившись в редуцирующем устройстве ДР2, поток газа охлаждается. После этого он подключается к потоку несжижившегося газа низкого давления в точке 7.
Источником холода в теплообменниках Т01 и Т02 служат холодные составляющие потока подвергнутого энергоразделению в вихревых трубах ВТ1 и ВТ2 газа высокого давления, поступающего с входа ГРС (точка 9).
Для повышения эффективности работы вихревых труб ВТ1 и ВТ2 горячие потоки газа с их выхода и с выхода теплообменников Т01 и Т02 (точка 11) направляются в эжектор Э1. Активный поток газа подается в эжектор Э1 с входа ГРС (точка 9).
Согласно проведенного авторами расчета в предлагаемом способе ожижения природного газа возможно дополнительное снижение температуры газа высокого давления на входе в основной рекуперативный теплообменник не менее чем на 20°С и за счет этого увеличить коэффициент ожижения не менее чем в 1,3-2,0 раза по сравнению со способом-прототипом.
Литература
1. Иванцов О.М., Двойрис А.Д. Низкотемпературные газопроводы. М., 1980, с.207-209.
2. Сердюков С.Г., Ходорков И.Л. Перспективы широкомасштабной газификации регионов и повышения рентабельности АГНКС-500. Нефтегазовые технологии, 2002, №2, с.17-19.
3. Патент РФ №2127855.
4. Меркулов А.П. Вихревой эффект и его применение в технике. М., Машиностроение, 1969, с.65-69.
5. Дыскин Л.М. Вихревые термостаты и воздухоочистители. Н.Новгород, ННГУ, 1991, с.5-16.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА СЖИЖЕННОГО ПРИРОДНОГО ГАЗА | 2003 |
|
RU2247908C1 |
СПОСОБ ОЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 2002 |
|
RU2234648C2 |
СПОСОБ ОЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 1997 |
|
RU2127855C1 |
СПОСОБ ОЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 2001 |
|
RU2202078C2 |
СПОСОБ ОЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 1997 |
|
RU2135913C1 |
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА В ЦИКЛЕ ВЫСОКОГО ДАВЛЕНИЯ | 2020 |
|
RU2772461C2 |
СПОСОБ УТИЛИЗАЦИИ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ ГАЗА, ТРАНСПОРТИРУЕМОГО В МАГИСТРАЛЬНОМ ТРУБОПРОВОДЕ ПРИ РЕДУЦИРОВАНИИ НА ГАЗОРАСПРЕДЕЛИТЕЛЬНЫХ СТАНЦИЯХ, И УСТРОЙСТВО, ЕГО РЕАЛИЗУЮЩЕЕ | 2001 |
|
RU2175739C1 |
СПОСОБ УТИЛИЗАЦИИ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ ГАЗА ПРИ РЕДУЦИРОВАНИИ НА ГАЗОРАСПРЕДЕЛИТЕЛЬНЫХ СТАНЦИЯХ И УСТРОЙСТВО, ЕГО РЕАЛИЗУЮЩЕЕ | 2002 |
|
RU2204759C1 |
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 2006 |
|
RU2306500C1 |
СПОСОБ ВЫДЕЛЕНИЯ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ИЗ ПРИРОДНОГО ГАЗА | 1999 |
|
RU2168683C2 |
Способ ожижения природного газа состоит в последовательном охлаждении газа высокого давления в предварительном и основном теплообменниках несконденсировавшимся в цикле природным газом обратного потока низкого давления и дополнительным потоком газа, охлажденного в вихревой трубе, дросселировании охлажденного газа высокого давления и разделении образующейся парожидкостной смеси в конденсатосборнике. Дополнительный холодный поток газа создают путем охлаждения, по крайней мере, в одном вспомогательном теплообменнике за счет холода, вырабатываемого, по крайней мере, в одной вихревой трубе, и последующего дросселирования газа, поступающего из внешнего источника, обладающего давлением большей величины, чем давление обратного потока. Эффективность способа может быть дополнительно увеличена с помощью эжектора, на вход которого подают поток газа с выхода теплообменников и горячий поток газа с выхода вихревых труб, а в качестве активного газа используют газ, поступающий из внешнего источника, обладающего давлением большей величины, чем давление обратного потока. Использование изобретения позволит повысить эффективность ожижения. 1 з.п. ф-лы, 2 ил.
СПОСОБ ОЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 1997 |
|
RU2127855C1 |
СПОСОБ ОЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 1997 |
|
RU2135913C1 |
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2158400C1 |
GB 1096781 A, 29.12.1967 | |||
US 3775988 A, 04.12.1973. |
Авторы
Даты
2004-10-20—Публикация
2003-02-07—Подача