Изобретение относится к реагентной очистке подземных вод, используемых для питьевого водоснабжения, и, в частности, способ предназначен для очистки подземных вод от железа и марганца при их совместном присутствии в условиях низких температур, низких значений щелочности и жесткости воды.
Как известно (Г.И.Николадзе. “Улучшение качества подземных вод”. М., Стройиздат, 1987), очистка подземных вод от железа и марганца при температуре очищаемой воды >4... 5° С, щелочности и жесткости более 2 мг-экв/л не представляет затруднений и при воздействии реагентов-окислителей, каковым, например, является в известных технологиях перманганат калия, проходит в штатном режиме: двухвалентные ионы железа и марганца окисляются соответственно до трехвалентного и четырехвалентного состояния, образуя нерастворимые в воде продукты реакции. Этот процесс описывается следующими уравнениями реакций:
3Fе2++МnO
3Мn2++2MnO
Продукты реакции в виде взвешенных веществ обычно отделяются фильтрованием на песчаных фильтрах.
При пониженных температурах, низкой щелочности и жесткости эти процессы протекают медленно, образуя мелкодисперсные продукты реакции, которые не могут быть задержаны фильтрованием через песок. Следствием этого является просачивание загрязнений в фильтрат, то есть качество очищенной воды не соответствует предъявляемым требованиям.
Известен способ очистки подземных вод от железа и марганца, заключающийся в дозировании в проточную воду раствора перманганата калия с последующим задержанием продуктов реакции на фильтрах (см. “Справочник проектировщика. Водоснабжение населенных мест и промышленных предприятий”, М., Стройиздат, 1977, стр.192-193).
Данный способ позволяет достичь остаточных концентраций по железу и марганцу соответственно 0,3 и 0,1 мг/л. Это удовлетворяет требованиям СанПиН 2.1.4.559-96 “Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества”.
Однако эта технология не позволяет обеспечить необходимое качество очищенной воды по железу и марганцу при их совместном присутствии в условиях низких температур (менее 4° С), низкой щелочности (не более 1,2 мг-экв/л) и низкой жесткости воды (не более 1,0 мг-экв/л).
Известен способ очистки воды от железа, заключающийся в обработке воды раствором пероксида водорода с последующим отделением продуктов реакции (см., например, В.С.Алексеев и др. “Обезжелезивание подземных вод в пласте с помощью перекиси водорода”, журнал “Водоснабжение и сантехника”, 1981, №6, стр.25).
Этот способ позволяет окислить двухвалентное железо до трехвалентного состояния и отделить его от воды
2Fe2++Н2O2+2H+→2Fe3++2Н2O;
Fe3++3Н2O→ Fе(ОН)3↓+3H+.
Но этот способ обеспечивает очистку воды при наличии в ней достаточного щелочного резерва (щелочность воды не менее 2 мг-экв/л).
Кроме того, этот способ не позволяет очистить воду от марганца.
Задачей настоящего изобретения является повышение степени очистки питьевой воды от железа и марганца при их совместном присутствии, включая коллоидные формы соединений этих металлов, в условиях низких температур, щелочности и жесткости.
Поставленная задача решается тем, что очистка питьевой воды, включающая ее обработку перманганатом калия и последующее фильтрование, дополнительно содержит обработку пероксидом водорода.
Особенностью способа является то, что обработку воды проводят последовательно, сначала перманганатом калия, а затем пероксидом водорода.
Другой особенностью способа является то, что перманганат калия дозируется в избытке по отношению к его стехиометрическому количеству, необходимому для окисления двухвалентных ионов железа и марганца, а пероксид водорода подается в соотношении 1:3 к избытку перманганата калия.
Еще одной особенностью способа является то, что соотношение доз перманганата калия и пероксида водорода, подаваемых в очищаемую воду, составляет соответственно от 15:1 до 6:1.
Очистка воды по данному способу осуществляется следующим образом.
Подземные воды, содержащие двух- и трехвалентное железо, а также марганец в концентрациях 5-30 ПДК при естественных температуре (1,5-2,5° С), щелочности (не более 1,2 мг-экв/л) и жесткости (не более 1,0 мг-экв/л) подают в первую камеру смешения - реакции, перед которой в поток дозируют раствор перманганата калия.
Первая камера смешения выполнена в виде вертикального перегородчатого смесителя.
Введение в поток очищаемой воды раствора перманганата калия осуществляют через, например, штуцер, вмонтированный в трубопровод перед первой камерой смешения.
Устройство ввода раствора перманганата калия содержит также дозатор, выполненный, например, в виде мембранного насоса с электромагнитным приводом, и расходный бак раствора реагента. Затем, после первой камеры смешения, в воду дозируют раствор пероксида водорода. После чего очищаемую воду подают во вторую камеру смешения-реакции, где происходит процесс восстановления избыточного количества перманганата калия.
После второй камеры смешения очищаемую воду пропускают через засыпной, например, песчаный фильтр, после которого определяют остаточные концентрации железа и марганца в воде.
Один из вариантов осуществления изобретения.
Подземную воду с содержанием железа трехвалентного до 2,0 мг/л в коллоидной форме, железа двухвалентного до 2,5 мг/л, марганца 0,5 мг/л при температуре 2° С, щелочности до 1,0 мг-экв/л и жесткости до 1,0 мг-экв/л подают протоком на очистную установку, содержащую две камеры смешения и оборудование для ввода в проходящий поток очищаемой воды растворов реагентов.
Перед первой камерой смешения в очищаемую воду дозируют перманганат калия дозой 5,0-7,0 г/м3.
Перед второй камерой смешения в проходящий поток дозируют пероксид водорода дозой 0,3-0,8 г/м3.
Затем очищаемую воду фильтруют через известные песчаные фильтры.
В результате очистки получают воду с содержанием железа общего не более 0,2мг/л, марганца не более 0,1 мг/л. Железо двухвалентное отсутствует. Цветность очищенной воды не более 5° БКШ (бихромат-кобальтовой шкалы), мутность не более 0,5 мг/л, запахи и привкусы отсутствуют.
Другим вариантом осуществления изобретения является следующий.
Подземную воду с содержанием железа трехвалентного до 2,0 мг/л в коллоидной форме, железа двухвалентного до 2,5 мг/л, марганца 0,5 мг/л при температуре 1,8° С пропускают через описанную установку, где в очищаемую воду последовательно дозируют и смешивают с ней перманганат калия дозой 6-8 г/м3 и пероксид водорода дозой 0,5-1,0 г/м3. Затем воду фильтруют через песчаные фильтры.
В фильтрованной воде содержится железа общего не более 0,1 мг/л, железа двухвалентного - не обнаружено, марганца не более 0,05 мг/л. Цветность очищенной воды не более 3°БКШ, мутность не более 0,3 мг/л, запахи и привкусы отсутствуют.
При проведении процесса очистки воды происходит окисление перманганатом калия двухвалентного железа и двухвалентного марганца.
Избыток дозы перманганата калия восстанавливается пероксидом водорода согласно уравнению
2КМnO4+3Н2O2→2МnО(ОН)2↓ +3O2↑+2КОН.
Образующийся гидрат диоксида марганца - Mn(OH)2 - является мощным сорбентом-соосадителем и переводит в твердую фазу коллоидные формы окисленных железа и марганца, а также соединения, придающие очищаемой воде цветность, привкусы и запахи.
Изобретение обеспечивает высокую степень очистки от всех форм железа и марганца в условиях низких температур, низкой щелочности и жесткости воды.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД ОТ ЖЕЛЕЗА И МАРГАНЦА В УСЛОВИЯХ НИЗКИХ ЗНАЧЕНИЙ ТЕМПЕРАТУРЫ, ЩЕЛОЧНОСТИ И ЖЕСТКОСТИ ВОДЫ | 2006 |
|
RU2288183C1 |
СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД ОТ ЖЕЛЕЗА И МАРГАНЦА И МАЛОГАБАРИТНАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2442754C2 |
СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД ОТ ЖЕЛЕЗА И МАРГАНЦА | 2006 |
|
RU2310613C1 |
СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД | 2017 |
|
RU2658419C1 |
СПОСОБ ОЧИСТКИ И МИНЕРАЛИЗАЦИИ ПРИРОДНЫХ ВОД | 2017 |
|
RU2646008C1 |
СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННОГО ИСПОЛЬЗОВАНИЯ | 2019 |
|
RU2717522C1 |
Способ очистки воды | 2020 |
|
RU2750489C1 |
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА ДЛЯ УДАЛЕНИЯ ИОНОВ МАРГАНЦА ИЗ ВОДЫ | 1995 |
|
RU2091158C1 |
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ ВОД | 2013 |
|
RU2524965C1 |
Способ получения фильтрующего материала для очистки вод от марганца и гидросульфид-иона | 2018 |
|
RU2676977C1 |
Изобретение относится к реагентным способам обработки подземных вод, используемых для питьевого водоснабжения и, в частности, предназначено для очистки воды от железа и марганца при их совместном присутствии. Способ очистки питьевой воды включает последовательную обработку очищаемой воды перманганатом калия и пероксидом водорода с последующим фильтрованием на песчаных фильтрах, причем пероксид водорода подают в соотношении 1:3 к избытку перманганата калия, а соотношение доз перманганата калия и пероксида водорода при обработке воды составляет соответственно от 15:1 до 6:1. Кроме того, перманганат калия дозируют в избытке по отношению к его стехиометрическому количеству, необходимому для окисления двухвалентного железа и марганца. Способ обеспечивает повышение степени очистки питьевой воды от железа и марганца при их совместном присутствии, включая коллоидные формы соединений этих металлов, в условиях низких температур, низкой щелочности и пониженной жесткости воды. 2 з.п.ф-лы.
СПРАВОЧНИК ПРОЕКТИРОВЩИКА | |||
Водоснабжение населенных мест и промышленных предприятий | |||
- М.: Стройиздат, 1977, с.192 и 193 | |||
US 5552052 A, 03.09.1996 | |||
Перекатываемый затвор для водоемов | 1922 |
|
SU2001A1 |
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА ДЛЯ УДАЛЕНИЯ ИОНОВ МАРГАНЦА ИЗ ВОДЫ | 1995 |
|
RU2091158C1 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ВОДЫ | 1991 |
|
RU2021212C1 |
Перекатываемый затвор для водоемов | 1922 |
|
SU2001A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
0 |
|
SU183894A1 |
Авторы
Даты
2004-10-27—Публикация
2002-01-29—Подача