Изобретение относится к области медицины и может быть использовано в промышленности по производству сахара, фармацевтическом производстве при производстве камфоры, кокаина, никотина, при диагностике и лечении сахарного диабета, нефрита и др. заболеваний.
Известно использование эффекта вращения плоскости поляризации для идентификации оптически активных веществ, а также для измерения их концентрации в растворах. Угол поворота плоскости поляризации в растворах естественно активных веществ при постоянной температуре пропорционален концентрации С и толщине слоя раствора Е=[1]×Cd, потому что поворот плоскости поляризации определяется числом молекул, которые встречают свет, следовательно, по углу поворота плоскости поляризации можно определить концентрацию активных веществ в растворах. Коэффициент пропорциональности называют удельным коэффициентом вращения. Зная этот коэффициент для данного вещества и измеряя угол поворота от растворов с неизвестной концентрацией оптически активного вещества, можно точно и быстро определить концентрацию этого вещества в растворе (Физический энциклопедический словарь. - М.: Советская энциклопедия, 1983, с. 572-578).
Известен метод определения концентрации сахара сахариметром Загорского оптико-механического завода "Поляриметр круговой" модели СМ, в котором использован принцип уравнивания яркостей трех частей, на которые делят поле зрения. Разделение поля зрения на 3 части осуществляют путем введения в оптическую систему кварцевой пластинки, которая занимает среднюю часть поля. Уравнивание полей происходит вблизи полного затемнения поля, что соответствует почти полному скрещиванию поляризатора и анализатора (83-85) при наблюдении через зрительную трубу (Поляриметр круговой, модель СМ. Описание конструкции и методика работы. Загорский оптико-механический завод, 1969).
Однако визуальные методы измерения степени поляризации ограничены контрастной чувствительностью глаза человека, т.е. пределом его способности различать разную освещенность. Малых различий в освещенности глаз не воспринимает, что приводит к ошибкам в измерении. Поэтому для измерений применяют фотоэлектрические устройства. Они основаны на использовании минимальной интенсивности света, прошедшего через анализатор и активное вещество. Поворот анализатора компенсирует вращение плоскости поляризации в веществе, внесенном в оптический тракт. Для увеличения чувствительности и точности сигнал превращают в переменный, модулированный, который с фотоэлектрического умножителя через усилитель подают на измерительный прибор. В этой схеме на пути света, прошедшего через активную среду, ставят ячейку Фарадея из стекла флинта, помещенную в соленоид, который создает магнитное поле. Оно подбирается так, чтобы магнитное вращение плоскости поляризации было равно по величине и противоположно по направлению естественному вращению в исследуемом веществе. Измерение искомого параметра сводится к измерению соответствующего магнитного поля (Н.Д.Жевандров. Применение поляризованного света. М.: Наука, 1978, с. 69-75).
К недостаткам прибора относится сложность его конструкции и большая стоимость ячейки Фарадея.
Задачей изобретения является упрощение и удешевление прибора.
Поставленная задача решается тем, что прибор для определения содержания оптически активных веществ, включающий осветитель, поляризатор, кювету с исследуемой жидкостью, анализатор, фотоприемник, дополнительно содержит измеритель темнового поля со схемой сравнения, один вход которого соединен с выходом фотоприемника, второй - с источником опорного сигнала, а выход - с индикатором нарушения баланса темнового поля, посредством которого фиксируется наличие напряжения, пропорционального содержанию вещества в исследуемой жидкости, при этом вход источника опорного сигнала соединен с входом регулятора напряжения осветителя и на выходе регулятора напряжения имеется измеритель напряжения осветителя, снабженный шкалой для определения содержания оптически активных веществ в %.
На чертеже представлена схема прибора, где:
1 - осветитель, 2 - осветительная линза, 3 - поляризатор, 4 - кювета с исследуемой жидкостью, 5 - анализатор, 6 - фотоприемник, 7 - темновое поле со схемой сравнения, 8 - источник опорного сигнала для темнового поля, 9 - регулятор напряжения для осветителя, 10 - индикатор баланса темнового поля со схемой сравнения, т.е. появления оптически активного вещества в кювете 4.
Прибор работает следующим образом.
На осветитель подают номинальное напряжение питания. Световой поток формируется линзой 2, поляризуется в поляризаторе 3, проходит через пустую кювету 4, поступает на анализатор 5, где добиваются максимального ослабления светового потока, затем поступает на фотоприемник 6 и затем на один из входов темнового поля 7 со схемой сравнения, которая выполняет функцию анализатора появления оптически активного вещества в кювете 4. На другой вход темнового поля 7 подают напряжение с выхода источника опорного сигнала, вход которого соединен с входом регулятора напряжения 9 осветителя 1. Напряжение на выходе 8 устанавливают такой величины сигнала, что индикатор 10 находится в погасшем состоянии. Так заканчивают подготовку прибора к измерению.
Затем в кювету заливают исследуемую жидкость для определения содержания вещества, например сахара. Т.к. растворы веществ являются оптически активными, то происходит вращение плоскости поляризации, нарушается баланс поляризованного света, и на выходе фотоприемника 6 увеличивается напряжение, поступающее на один из входов схемы сравнения. На выходе схемы сравнения 7 на индикаторе 10 появится напряжение, пропорциональное содержанию вещества в исследуемой жидкости, наличие которого фиксируется загоранием индикатора 10. Далее регулятором напряжения 9 изменяют значение напряжения на осветителе до тех пор, пока индикатор 10 не погаснет, что свидетельствует о равенстве напряжения в анализаторе 5 и источнике опорного сигнала. Напряжение источника осветителя пропорционально содержанию анализируемого оптически активного вещества, например сахара. На выходе регулятора напряжения имеется измеритель напряжения, снабженный шкалой для определения содержания оптически активных материалов в %.
Благодаря простоте и дешевизне предлагаемого прибора он может быть использован для проведения экспресс-анализа как в клинических, так и в домашних условиях при различных патологиях, когда возникает необходимость определения содержания сахара в крови, моче, лимфе, слюне и пр.
название | год | авторы | номер документа |
---|---|---|---|
ПОЛЯРИМЕТР | 1992 |
|
RU2112937C1 |
СПОСОБ ИЗМЕРЕНИЯ УГЛА ВРАЩЕНИЯ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ И ФОТОЭЛЕКТРИЧЕСКИЙ ПОЛЯРИМЕТР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2088896C1 |
СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ОПТИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ В МУТНЫХ РАСТВОРАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2325630C1 |
УСТРОЙСТВО ДЛЯ АВТОМАТИЧЕСКОГО ЭКСПРЕСС-АНАЛИЗА КОНЦЕНТРАЦИИ САХАРА И ДРУГИХ ОПТИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ В ПРОЗРАЧНЫХ РАСТВОРАХ | 1998 |
|
RU2145418C1 |
ПОЛЯРИМЕТР ДЛЯ ИЗМЕРЕНИЯ ПОСТОЯННОЙ ВЕРДЕ ПРОЗРАЧНЫХ ВЕЩЕСТВ | 2017 |
|
RU2648014C1 |
Автоматический поляриметр | 1982 |
|
SU1060954A1 |
ПОЛЯРИМЕТР ПОГРУЖНОЙ ДЛЯ КОНТРОЛЯ ДОЛИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ В СВЕТЛЫХ НЕФТЕПРОДУКТАХ | 2018 |
|
RU2680861C1 |
Способ определения коэффициентов молекулярной диффузии в жидкостях и устройство для его реализации | 1980 |
|
SU976307A1 |
СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ САХАРА И САХАРИМЕТР ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2002 |
|
RU2224240C2 |
Устройство контроля стабильности состава оптически прозрачных сред | 1989 |
|
SU1718054A1 |
Изобретение относится к измерительной технике. Прибор включает осветитель, поляризатор, кювету с исследуемой жидкостью, анализатор и фотоприемник. Прибор дополнительно содержит измеритель темнового поля со схемой сравнения, один вход которого соединен с выходом фотоприемника, второй - с выходом источника опорного сигнала, а выход - с индикатором, посредством которого фиксируется наличие напряжения, пропорционального содержанию вещества в исследуемой жидкости, при этом на выходе регулятора напряжения имеется измеритель напряжения осветителя, снабженный шкалой для определения содержания вещества в %. Технический результат - упрощение и удешевление прибора. 1 ил.
Прибор для определения содержания оптически активных веществ, включающий осветитель, поляризатор, кювету с исследуемой жидкостью, анализатор, фотоприемник, отличающийся тем, что дополнительно содержит измеритель темнового поля со схемой сравнения, один вход которого соединен с выходом фотоприемника, второй - с источником опорного сигнала, а выход - с индикатором нарушения баланса темнового поля, посредством которого фиксируется наличие напряжения, пропорционального содержанию вещества в исследуемой жидкости, при этом вход источника опорного сигнала соединен с входом регулятора напряжения осветителя и на выходе регулятора напряжения имеется измеритель напряжения осветителя, снабженный шкалой для определения содержания оптически активных веществ в %.
СПОСОБ ПОЛЯРИЗАЦИОННОГО АНАЛИЗА | 1992 |
|
RU2040796C1 |
ПОЛЯРИМЕТР ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ САХАРА В МОЧЕ | 1991 |
|
RU2029258C1 |
ПОЛЯРИМЕТР | 1992 |
|
RU2112937C1 |
Поляриметр для измерения концетрации сахара в моче | 1990 |
|
SU1749783A1 |
Авторы
Даты
2004-11-10—Публикация
2002-07-22—Подача