Изобретение относится к области авиационной техники, в частности к способам запуска авиационных турбореактивных двигателей.
Известен способ запуска газотурбинного двигателя, заключающийся в раскрутке его ротора от одного или нескольких внешних источников энергии, в частности путем подвода к ротору двигателя механической энергии от газотурбинного и пороховых стартеров (1).
Основным недостатком рассматриваемого способа является то, что энергия от внешнего источника к ротору подводится только в виде механической энергии. При этом на этапе розжига камеры сгорания и начальной работе турбины, из-за малого уровня давлений в газовоздушном тракте двигателя, воздух практически не подается в систему охлаждения турбины, в результате чего отсутствует эффективное охлаждение основных элементов турбины - сопловых и рабочих лопаток. В процессе запуска двигателя это накладывает ограничение по температуре газов перед турбиной, что снижает возможности надежного и быстрого запуска двигателя, особенно в экстремальных условиях для запуска (при высоких температурах окружающей среды, высокогорных условиях и т.п.).
Другим недостатком известного способа является затрудненность раскрутки ротора путем подвода к нему механической энергии от внешнего источника в условиях полета самолета, на режимах авторотации, из-за высокой вероятности поломки элементов трансмиссии, например, соединительных муфт, рессор и т.д.
Устранение этих недостатков особенно актуально для современных авиационных двухроторных двигателей. В этом случае, как правило, производится раскрутка ротора высокого давления. Ротор низкого давления работает в турбинном режиме, в результате чего за его рабочим колесом понижается давление. Чтобы обеспечить необходимый для розжига камеры сгорания уровень давлений и температур ротор высокого давления необходимо дополнительно подкрутить, а это приводит к росту потребной мощности внешних источников энергии.
Задачей изобретения является повышение надежности запуска двигателя на земле и в полете, в том числе и в нештатных ситуациях и при запуске в полете на режиме авторотации, а также сокращение времени запуска двигателя.
Задача решается тем, что в способе запуска газотурбинного двигателя, включающем раскрутку его ротора от одного или нескольких внешних источников энергии, для двигателя с охлаждаемой турбиной, при его запуске в полете или на земле во внештатных условиях раскрутку ротора осуществляют путем подачи сжатого воздуха в систему охлаждения турбины двигателя, а при запуске двигателя на земле в штатных условиях одновременно с подачей сжатого воздуха в систему охлаждения турбины двигателя осуществляют подвод механической энергии к ротору двигателя.
Кроме того, в качестве источника механической энергии может быть использована вспомогательная силовая установка, а в качестве источника сжатого воздуха может быть использована либо вспомогательная силовая установка, либо работающий двигатель рядом стоящего самолета, либо наземная энергетическая установка. Для многодвигательного летательного аппарата в качестве источника сжатого воздуха может быть использован один из работающих двигателей.
Для двухроторных газотурбинных двигателей подвод механической энергии может осуществляться к ротору высокого давления, а сжатый воздух подаваться либо в систему охлаждения турбины высокого давления, либо одновременно в систему охлаждения турбины высокого давления и в систему охлаждения турбины низкого давления, либо только в систему охлаждения турбины низкого давления.
При запуске двигателя в полете, одновременно с подачей сжатого воздуха в систему охлаждения турбины двигателя от внешнего источника энергии, возможно и осуществление подвода механической энергии к ротору двигателя.
Одновременный подвод механической энергии к ротору и подача сжатого воздуха в систему охлаждения турбины двигателя позволяет повысить надежность запуска и сократить его время. Передача механической энергии к ротору позволяет интенсивно раскручивать ротор на начальном этапе запуска, причем основной поток энергии расходуется на преодоление момента инерции ротора. Подача же сжатого воздуха в систему охлаждения турбины позволяет дополнительно подкручивать ротор и надежно охлаждать турбину в момент розжига камеры сгорания и подводить к ротору энергию за счет работы самой турбины. При нарастании оборотов ротора доля мощности от подвода механической энергии падает, а доля мощности от подачи сжатого воздуха в систему охлаждения турбины растет.
Подвод механической энергии и энергии сжатого воздуха может осуществляться как от одного, так и от различных внешних источников энергии. При этом подвод механической энергии и энергии от сжатого воздуха от одного внешнего источника энергии снижает вес и упрощает схему системы запуска, а при подаче от различных источников энергии возрастает надежность запуска в нештатных условиях.
При запуске двигателя в полете на режимах авторотации, подавая воздух в систему охлаждения турбины, производят дополнительно “мягкую” (без использования обгонных муфт и т.п.) подкрутку ротора до оборотов, при которых надежно осуществляется запуск.
При запуске двигателя на земле в нештатных условиях, например, при невозможности подвести к ротору механическую энергию, раскрутка ротора осуществляется только за счет подвода энергии сжатого воздуха от внешнего источника. Несмотря на увеличенное время запуска при этом, запуск двигателя состоится.
Использование в качестве источника механической энергии вспомогательной силовой установки (далее - ВСУ) позволяет размещать внешний источник непосредственно в районе двигателя. Применение ВСУ в качестве источника как механической энергии, так и энергии сжатого воздуха, позволяет иметь непосредственно на летательном аппарате автономный источник питания. Кроме того, применение ВСУ в качестве источника сжатого воздуха позволяет снизить вес и габариты воздушных трубопроводов от ВСУ к системе охлаждения турбины.
Использование в качестве источника сжатого воздуха работающего двигателя рядом стоящего самолета или наземной энергетической установки или для многодвигательной установки одного из работающих двигателей, расширяет возможности запуска двигателя. При этом отбор сжатого воздуха от нескольких источников энергии, например, одного из вышеприведенных в сочетании с ВСУ повышает эффективность запуска и надежность его системы.
Для двухроторных газотурбинных двигателей одновременный подвод механической энергии и энергии сжатого воздуха к ротору высокого давления обеспечивает более интенсивную раскрутку ротора высокого давления, имеющего по сравнению с ротором низкого давления меньший момент инерции и более развитую структуру системы охлаждения турбины.
Подача сжатого воздуха в систему охлаждения турбины низкого давления позволяет производить дополнительную подкрутку ротора низкого давления, в результате чего уменьшается или полностью снимается “турбинный” эффект на компрессоре низкого давления.
В двухроторных газотурбинных двигателях, например если компрессор низкого давления имеет малую степень двухконтурности и небольшую степень сжатия, целесообразнее подводить механическую энергию к ротору высокого давления, а энергию от сжатого воздуха - к ротору низкого давления.
При наличии в двигателе соединительной муфты, способной подключать источник механической энергии, например ВСУ, к вращающемуся ротору, на режимах авторотации возможен одновременный подвод к ротору как энергии сжатого воздуха, так и механической энергии.
Предлагаемый способ поясняется чертежом, на котором изображена схема одного из вариантов системы запуска двигателя.
Система запуска двигателя включает в себя ВСУ 1, механически соединенную посредством передачи 2 с ротором высокого давления 3 двигателя. ВСУ 1 трубопроводом 4 соединена со входом в сопловые лопатки 5 турбины высокого давления 6, а трубопроводом 7 с сопловыми лопатками 8 турбины низкого давления 9.
Способ осуществляется следующим образом.
При запуске двигателя на земле, в штатных условиях для запуска, крутящий момент от работающей ВСУ 1 через механическую передачу 2 передается ротору высокого давления 3. Одновременно с этим по трубопроводу 4 от той же ВСУ 1 в систему охлаждения турбины высокого давления 6 подается сжатый воздух. Поступив на вход в сопловые лопатки 5 и пройдя через их внутренний тракт, воздух вытекает из щелей выходных кромок лопаток 5 и поступает на рабочие лопатки турбины высокого давления 6, создавая крутящий момент на ее рабочем колесе. Тем самым ротору 3 передается дополнительная энергия, повышающая эффективность его раскрутки.
В ряде случаев сжатый воздух от ВСУ 1 может осуществлять и подкрутку ротора турбины низкого давления 9, поступая по трубопроводу 7 через внутренний тракт и щели выходных кромок сопловых лопаток 8 на рабочие лопатки турбины низкого давления 9.
В нештатных ситуациях (экстремальных для запуска условиях, аварийных ситуациях и т.п.) и для запуска двигателя в полете на режиме авторотации осуществляют подкрутку ротора путем подачи сжатого воздуха на рабочие лопатки турбины высокого давления 6 от ВСУ 1 или любого другого источника сжатого воздуха. Для повышения эффективности запуска подача сжатого воздуха может быть осуществлена и одновременно от нескольких источников.
Предложенный способ позволяет значительно повысить эффективность запуска за счет оптимального сочетания подвода механической энергии и подвода энергии от сжатого воздуха в систему охлаждения, поднять надежность запуска в нештатных ситуациях, а также обеспечить запуск двигателя в условиях, при которых ранее запуск был невозможен.
(56) Патент RU №2196240 C1, F 02 С 7/26, опубл. 2003 г., бюл. №1.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЗАПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ С ОХЛАЖДАЕМОЙ ТУРБИНОЙ | 2003 |
|
RU2252327C1 |
СПОСОБ ЗАПУСКА ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ МНОГОДВИГАТЕЛЬНОГО ЛЕТАТЕЛЬНОГО АППАРАТА | 2004 |
|
RU2277179C2 |
Способ управления двухроторным газотурбинным двигателем самолета в режиме запуска при авторотации | 2016 |
|
RU2634505C1 |
СИЛОВАЯ УСТАНОВКА ЛЕТАТЕЛЬНОГО АППАРАТА | 2000 |
|
RU2224690C2 |
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ДЛЯ ЗАПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2003 |
|
RU2260133C2 |
СПОСОБ ГИДРАВЛИЧЕСКОГО ПРИВОДА СИСТЕМЫ УПРАВЛЕНИЯ САМОЛЕТОМ | 2003 |
|
RU2251513C1 |
ВИНТОКРЫЛЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ | 2016 |
|
RU2662339C2 |
СПОСОБ ЗАПУСКА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ САМОЛЕТА | 2001 |
|
RU2196240C1 |
Устройство для запуска газотурбинного двигателя | 2016 |
|
RU2634444C1 |
СПОСОБ АВАРИЙНОГО ОБЕСПЕЧЕНИЯ ЭНЕРГИЕЙ ВСПОМОГАТЕЛЬНОЙ СИЛОВОЙ УСТАНОВКИ СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ САМОЛЕТА | 1992 |
|
RU2005898C1 |
Изобретение относится к области авиационной техники, в частности к способам запуска авиационных турбореактивных двигателей. Способ запуска газотурбинного двигателя, включающий раскрутку его ротора от одного или нескольких внешних источников энергии, для двигателя с охлаждаемой турбиной, при его запуске в полете или на земле во внештатных условиях раскрутку ротора осуществляют путем подачи сжатого воздуха в систему охлаждения турбины двигателя, а при запуске двигателя на земле в штатных условиях одновременно с подачей сжатого воздуха в систему охлаждения турбины осуществляют подвод механической энергии к валу ротора двигателя. Данный способ позволяет значительно повысить эффективность запуска за счет оптимального сочетания подвода механической энергии и подвода энергии от сжатого воздуха в систему охлаждения, поднять надежность запуска в нештатных ситуациях, а также обеспечить запуск двигателя в условиях, при которых ранее запуск был невозможен. 9 з.п.ф-лы, 1 ил.
СПОСОБ ЗАПУСКА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ САМОЛЕТА | 2001 |
|
RU2196240C1 |
СПОСОБ РЕГУЛИРОВАНИЯ РАДИАЛЬНЫХ ЗАЗОРОВ В ТУРБИНЕ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПРИ ЗАПУСКЕ | 1990 |
|
RU2011874C1 |
СПОСОБ ЗАПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 1993 |
|
RU2044133C1 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 1991 |
|
RU2046971C1 |
US 3286461 A, 22.11.1966 | |||
US 3451215 A, 24.06.1969. |
Авторы
Даты
2004-12-10—Публикация
2003-04-01—Подача