Изобретение относится к области авиадвигателестроения, в частности к способам запуска газотурбинного двигателя.
Известен способ запуска газотурбинного двигателя с охлаждаемой турбиной, включающий подвод сжатого воздуха к пусковому устройству от внешнего источника энергии и раскрутку ротора двигателя пусковым устройством до розжига его камеры сгорания [1].
В известном способе в качестве пускового устройства используется воздушный стартер, механически связанный с валом ротора двигателя, а в качестве внешнего источника энергии вспомогательная силовая установка. После воспламенения топлива турбина газотурбинного двигателя начинает развивать положительную мощность на валу его ротора, и в дальнейшем, после розжига камеры сгорания, когда турбина развивает достаточную мощность для самостоятельной раскрутки ротора двигателя с заданным ускорением, пусковое устройство отключается.
Основным недостатком известного способа является снижение уровня мощности, подводимой к ротору двигателя, ввиду того, что подвод к ротору механической энергии от пускового устройства прекращается после розжига камеры сгорания. Кроме того, на этапе розжига камеры сгорания при начальной работе турбины, из-за малого уровня давлений в газовоздушном тракте двигателя, воздух практически не подается в систему охлаждения турбины, в результате чего отсутствует эффективное охлаждение основных элементов турбины - сопловых и рабочих лопаток, что в процессе запуска двигателя накладывает ограничение по температуре газов перед турбиной.
Все это в совокупности увеличивает время запуска, снижает его надежность и повышает начальный уровень мощности внешнего источника энергии, что требует увеличения его габаритов и веса. Особенно эта проблема актуальна для авиационных двигателей.
Задачей, на решение которой направлено заявленное изобретение, является повышение надежности запуска двигателя и сокращение времени его запуска без увеличения габаритов и веса внешнего источника энергии.
Задача решается тем, что в способе запуска газотурбинного двигателя с охлаждаемой турбиной, включающем подвод сжатого воздуха к пусковому устройству от внешнего источника энергии и раскрутку ротора двигателя пусковым устройством до розжига его камеры сгорания, после розжига камеры сгорания двигателя прекращают подвод сжатого воздуха от внешнего источника питания к пусковому устройству и направляют его в систему охлаждения турбины двигателя, при этом одновременно увеличивают подачу топлива в камеру сгорания двигателя.
Кроме того, в предлагаемом способе может иметь место следующее.
- во время подвода сжатого воздуха к пусковому устройству осуществляют подвод дополнительной механической энергии к ротору двигателя, соединяя его вал с валом ротора внешнего источника энергии;
- одновременно с прекращением подвода сжатого воздуха к пусковому устройству осуществляют подвод механической энергии к ротору двигателя, соединяя его вал с валом ротора внешнего источника энергии;
- подвод механической энергии к ротору двигателя и подачу сжатого воздуха осуществляют от одного и того же внешнего источника энергии.
Отключение подачи сжатого воздуха на пусковое устройство и подача его в систему охлаждения турбины позволяет, с одной стороны, осуществлять подкрутку ротора двигателя, а с другой - надежно охлаждать турбину двигателя. Наличие надежного охлаждения турбины позволяет повышать температуру перед ней, увеличивая подачу топлива в камеру сгорания. В свою очередь, более высокий уровень температуры газов перед турбиной повышает темп раскрутки ротора и более быстрый выход двигателя на устойчивый режим его работы - режим малого газа.
В ряде случаев, особенно при эксплуатации авиационных двигателей в тяжелых климатических условиях, например при высокой температуре и низком давлении окружающей среды, за счет уменьшения расхода сжатого воздуха от внешнего источника энергии снижается мощность пускового устройства. В этом случае параллельно с подводом к ротору механической энергии от пускового устройства целесообразно подводить механическую энергию непосредственно от внешнего источника, соединяя для этого вал ротора двигателя с валом ротора внешнего источника энергии. Наилучший результат получается в том случае, когда механическую энергию начинают подводить одновременно с прекращением подвода сжатого воздуха к пусковому устройству и ротор двигателя уже вращается. В этом случае обеспечивается безударное сцепление валов ротора двигателя и ротора внешнего источника энергии.
Использование одного и того же внешнего источника энергии для подвода механической энергии к ротору двигателя и подвода сжатого воздуха к пусковому устройству и в систему охлаждения турбины двигателя повышает удельную энергоотдачу от внешнего источника энергии, уменьшает его габариты и вес. В качестве внешнего источника энергии можно использовать вспомогательную силовую установку.
Предлагаемый способ поясняется чертежом, на котором изображена схема системы запуска двигателя.
На схеме показаны вспомогательная силовая установка (далее - ВСУ) 1, вал ротора которой механически соединен через соединительную муфту 2 с коробкой агрегатов 3, механически связанной через передаточный вал 4 и рессору 5 с валом ротора 6 двигателя. ВСУ 1 трубопроводом 7 через клапан 8 переключения соединена с входом в пусковое устройство, представляющее собой воздушный стартер 9 с воздушной турбиной 10, и через клапан 11 с системой охлаждения турбины 12.
Способ осуществляется следующим образом.
Сжатый воздух от ВСУ 1 через трубопровод 7 и клапан 8 поступает в воздушную турбину 10 воздушного стартера 9, раскручивая ее, и далее выбрасывается в окружающую среду. Воздушная турбина 10 через коробку агрегатов 3, передаточный вал 4 и рессору 5 передает мощность к ротору 6 и раскручивает его. По достижении определенных оборотов ротора 6 подается команда на воспламенитель и подачу топлива в камеру сгорания 13. После воспламенения камеры сгорания 13 подается команда на закрытие клапана 8 и открытие клапана 11. Воздух прекращает поступать в воздушный стартер 9 и начинает поступать в систему охлаждения 12 турбины двигателя. Проходя через внутренние полости сопловых лопаток 14 и вытекая через их задние кромки, воздух поступает на лопатки рабочего колеса 15 турбины и, обтекая их, создает усилие, вращающее ротор 6. Одновременно воздух охлаждает и сопловые лопатки 14.
Охлаждение сопловых лопаток 14 от ВСУ 1 позволяет увеличить расход топлива в камеру сгорания 13, поднять температуру перед турбиной, увеличить мощность турбины и ускорить выход двигателя на устойчивый режим его работы - режим малого газа.
Предложенный способ позволяет повысить эффективность запуска за счет оптимального сочетания подводов механической энергии от пускового устройства и внешнего источника энергии в сочетании с воздушной подкруткой ротора через систему охлаждения турбины и использованием мощности, развиваемой охлаждаемой от внешнего источника энергии турбиной двигателя. Все эти мероприятия позволяют увеличить надежность запуска в нештатных ситуациях или тяжелых климатических условиях, поднять удельную мощность внешнего источника энергии, не увеличивая его габариты и вес, а также сократить время запуска двигателя.
Источник информации
1. Б.М.Кац, Э.С.Жаров, В.К.Винокуров. Пусковые системы авиационных газотурбинных двигателей. М.: Машиностроение, 1976 г., стр.7-9.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЗАПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2003 |
|
RU2241844C1 |
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ДЛЯ ЗАПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2003 |
|
RU2260133C2 |
СПОСОБ ЗАПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2003 |
|
RU2260134C1 |
СИСТЕМА ЗАПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2003 |
|
RU2260135C1 |
СПОСОБ И УСТРОЙСТВО ЗАПУСКА И ОХЛАЖДЕНИЯ МИКРО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПУСКОВЫМ КОМПРЕССОРОМ С ВОЗДУШНЫМ КЛАПАНОМ | 2013 |
|
RU2523084C1 |
СПОСОБ УПРАВЛЕНИЯ ЗАПУСКОМ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2011 |
|
RU2491437C2 |
СПОСОБ УПРАВЛЕНИЯ ЗАПУСКОМ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2011 |
|
RU2480601C2 |
СПОСОБ ВОЗДУШНОГО ЗАПУСКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2006 |
|
RU2315882C1 |
Устройство для запуска газотурбинного двигателя | 2016 |
|
RU2635163C1 |
Способ и устройство для запуска газотурбинного двигателя | 2018 |
|
RU2689499C1 |
Способ запуска газотурбинного двигателя с охлаждаемой турбиной включает в себя подвод сжатого воздуха к пусковому устройству от внешнего источника энергии и раскрутку ротора двигателя пусковым устройством до розжига его камеры сгорания. После розжига камеры сгорания двигателя прекращают подвод сжатого воздуха от внешнего источника питания к пусковому устройству и направляют его в систему охлаждения турбины двигателя, при этом одновременно увеличивают подачу топлива в камеру сгорания двигателя. Во время подвода сжатого воздуха к пусковому устройству возможно осуществлять подвод дополнительной механической энергии к ротору двигателя, соединяя его вал с валом ротора внешнего источника энергии. Изобретение позволяет увеличить надежность запуска двигателя в нештатных ситуациях или тяжелых климатических условиях, сократить время запуска, поднять удельную мощность внешнего источника энергии, не увеличивая его габариты и вес. 3 з. п. ф-лы, 1 ил.
Способ подачи охладителя в лопаточный аппарат газотурбинной установки | 1976 |
|
SU585303A1 |
Пожарный двухцилиндровый насос | 0 |
|
SU90A1 |
US 4043120 A, 23.08.1977 | |||
АВИАЦИОННАЯ СИЛОВАЯ УСТАНОВКА С ДОПОЛНИТЕЛЬНЫМ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ ДЛЯ ВОЗДУШНОЙ ПУСКОВОЙ СИСТЕМЫ И СИСТЕМЫ ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ | 1997 |
|
RU2133358C1 |
АНТИСЕПТИЧЕСКОЕ И ДЕЗОДОРИРУЮЩЕЕ СРЕДСТВО | 1997 |
|
RU2133126C1 |
DE 3441509 A1, 22.05.1986 | |||
DE 3441509 A1, 22.05.1986 | |||
US 4685287 A, 11.08.1987. |
Авторы
Даты
2005-05-20—Публикация
2003-08-29—Подача