ТЕРМОСТОЙКОЕ ГИДРОИЗОЛЯЦИОННОЕ ПОКРЫТИЕ ДЛЯ НАНЕСЕНИЯ НА ПОВЕРХНОСТЬ ТВЕРДОТОПЛИВНОГО СКВАЖИННОГО ЗАРЯДА И СПОСОБ ЕГО НАНЕСЕНИЯ Российский патент 2005 года по МПК C06D5/00 C06B21/00 C09D175/08 

Описание патента на изобретение RU2247103C2

Изобретение относится к гидроизоляционным материалам для твердотопливных зарядов термогазогенераторов, используемых для обработок нефтяных, нагнетательных и газовых скважин с целью повышения их производительности, и предназначено для защиты поверхности твердотопливных зарядов от воздействия скважинной жидкости.

Известны устройства для обработок скважин, в составе которых используются заряды, изготовленные из баллиститных или смесевых твердых топлив - пороховые генераторы давления бескорпусные (ПГД.БК), аккумуляторы давления для скважин (АДС). /Справочник по прострелочно-взрывной аппаратуре под ред. Фридляндера Л.Я., Москва, Недра, 1990/.

Заряды из баллиститных топлив не требуют специальной гидроизоляционной защиты поверхности, так как благодаря несовместимости топлива с водой сохраняют работоспособность после контакта со скважинной жидкостью.

Недостатком зарядов из баллиститных топлив, ограничивающих их применение, является недостаточная термостойкость, не превышающая 100°С.

Применение зарядов из смесевых твердых топлив позволяет существенно расширить температурный диапазон их применения (до 200°С), но при этом требуется специальная защита поверхности заряда - гидроизоляция, так как при контакте со скважинной жидкостью из поверхностных слоев заряда растворяется окислитель - перхлорат аммония (NH4ClO4), что может привести к невоспламенению заряда.

Известны материалы, используемые для защиты поверхности зарядов из смесевых твердых топлив от воздействия скважинной жидкости. В пороховых генераторах давления ПГД.БК-100, ПГД.БК-150 для этих целей используется защитное покрытие на основе эпоксидной смолы (Инструкция по применению пороховых генераторов давления ПГД.БК в скважинах, ВИЭМС, Москва, 1989, с.18).

Однако покрытие на основе эпоксидной смолы из-за неполного сгорания после завершения работы заряда, оставаясь в скважине, приводит к ее загрязнению.

Покрытие из этиленпропиленового каучука СКЭПТ для зарядов с повышенной температурой применения ПГД-250, изготовленных из термостойкого смесевого топлива ТСП-300 на основе дивинилстирольного термоэластопласта ДСТ-30, оказалось не пригодно, так как снижает их термостойкость (НТВ “Каротажник”, вып.66, изд. "АИС", Тверь, 2000, с.92-96).

Поэтому необходимо термостойкое покрытие, защищающее поверхность заряда от воздействия скважинной жидкости и одновременно сгорающее при работе заряда.

Наиболее близким по технической сущности к заявленному объекту является гидроизоляционное покрытие из прорезиненной балонной ткани №500 в термогазогенераторе (пат. RU №2184220 С2, Е 21 В 43/25), принятое авторами в качестве прототипа.

Заряды из смесевого твердого топлива формируются в мягкие формообразующие оболочки из балонной прорезиненной ткани и скрепляются с последней в процессе отверждения топлива. Сгораемая оболочка из балонной ткани № 500 служит защитным покрытием в процессе хранения и эксплуатации термогазогенератора.

Недостатком указанного прототипа является сложность технологического процесса формования зарядов в связи с необходимостью изготовления специальной оболочки для каждого заряда. Другим недостатком защитного покрытия из балонной ткани №500 является недостаточная адгезионная прочность к топливу из-за различия химической природы скрепляемых материалов (топлива и прорезиненной ткани). Этот недостаток не позволяет применять балонную ткань для перспективных термогазогенераторов, предназначенных для эксплуатации в условиях повышенных температур (>200°С).

Технической задачей настоящего изобретения является расширение температурного диапазона эксплуатации термогазогенераторов, повышение надежности скрепления покрытия с топливом, повышение технологичности процесса нанесения гидроизоляционного покрытия при обеспечении полного сгорания последнего, снижение стоимости изготовления термогазогенератора.

Технический результат достигается следующим образом:

- расширение температурного диапазона эксплуатации термогазогенератора на основе термостойкого смесевого топлива достигается тем, что защитное гидроизоляционное покрытие, наносимое на поверхность твердотопливного скважинного заряда, представляет собой термостойкую композицию, содержащую связующее - полидиенуретанэпоксидный олигомерный каучук, отвердитель - метафенилендиамин, наполнитель - углерода технического при следующем соотношении компонентов, мас.ч.:

полидиенурентанэпоксидный олигомерный каучук 100

метафенилендиамин 0,5-2,0

углерод технический 16,0-17,0

или связующее - полидиенуретанэпоксидный олигомерный каучук, отвердитель - метафенилендиамин, наполнитель - углерод технический и аэросил при следующем соотношении компонентов, мас.ч.:

полидиенурентанэпоксидный олигомерный каучук 100

метафенилендиамин 0,5-2,0

углерод технический 12,0-13,0

аэросил 4,0-5,0

- повышение надежности скрепления покрытия с топливом, особенно в условиях повышенных температур, обеспечивается использованием в качестве основы защитного покрытия связующего полидиенуретанэпоксидного олигомерного каучука, служащего связующей основой смесевого топлива, из которого изготовлен заряд. Это обеспечивает высокую степень совместимости материалов топлива и защитного покрытия и, как следствие, высокую адгезионную прочность между ними, что обеспечивает надежную гидроизоляцию поверхности заряда в условиях высоких температур.

Применение в качестве отвердителя метафенилендиамина позволяет отверждать покрытие при комнатной температуре, что дает возможность упростить технологический процесс нанесения покрытия на заряд; введение в состав аэросила обеспечивает тиксотропность состава, что исключает стекаемость состава с вертикальной поверхности заряда при его отверждении; применение в составе углерода технического позволяет структурировать состав, увеличивая его прочность;

- повышение технологичности процесса изготовления зарядов и снижение их стоимости достигается благодаря исключению операции изготовления специальных оболочек из прорезиненной ткани.

Предлагается наносить термостойкое гидроизоляционное покрытие на поверхность твердотопливного скважинного заряда в разбавленном виде, для чего компоненты покрытия смешивают при температуре 45-65°С в течение 1,0-1,5 ч при вакуумировании с остаточным давлением не более 20 мм рт.ст., полученную смесь разбавляют при массовом соотношении ее и разбавителя от 1:9 до 1:19, охлаждают до температуры 15-25°С и наносят на поверхность твердотопливного скважинного заряда путем двукратного погружения заряда в нее с выдержкой после каждого погружения в течение 5-10 с и отверждения при температуре 20-30°С в течение не менее 24 ч, причем в качестве разбавителя используют смесь 1,0 мас.ч. ацетона и 1,5-2,0 мас.ч. хладона.

Температурный диапазон смешения состава (45-65°С) установлен для снижения вязкости до уровня, обеспечивающего эффективное усреднение компонентов, и удаления газообразных продуктов вакуумированием.

Временной диапазон (1,0-1,5 ч) установлен экспериментальным путем и обеспечивает полное усреднение компонентов состава.

Установленная величина остаточного давления (не более 20 мм рт.ст.) и продолжительность перемешивания достаточны для полного удаления воздушных включений и газообразных продуктов. Выбранное количество разбавителя обеспечивает требуемую толщину защитного состава и равномерное нанесение его на поверхность заряда. Состав разбавителя - 1,0 мас.ч. ацетона и 1,5-2,0 мас.ч. хладона обеспечивает пожаробезопасность операции нанесения покрытия.

Были изготовлены два варианта состава разной рецептуры.

1. Состав с 100 мас.ч. полидиенуретанэпоксидного олигомерного каучука с 0,8 мас.ч. отвердителя - метафенилендиамина, с 16,4 мас.ч. наполнителя - углерода технического с последующим десятикратным разбавлением ацетонохладоновой смесью.

2. Состав с 100 маc. ч. полидиенуретанэпоксидного олигомерного каучука, с 2,0 маc. ч. отвердителя - метафенилендиамина, с 12,4 маc. ч. наполнителя - углерода технического, 4,0 маc. ч. аэросила с двадцатикратным разбавлением ацетонохладоновой смесью.

Технология нанесения на заряд в обоих случаях была одинакова: двукратное погружение заряда в приготовленный состав с выдержкой между погружениями 5-10 с. Время отверждения состава при температуре 20-30°С - 24 часа.

Оба варианта состава позволяют наносить покрытие на заряд равномерным слоем с достаточно высокой адгезией к защищаемой поверхности топлива и обеспечивают высокую надежность гидроизоляции поверхности заряда в условиях контакта со скважинной жидкостью при высокой температуре.

Эксплуатационные характеристики покрытия проверены стендовыми испытаниями твердотопливных зарядов с нанесенным гидроизоляционным покрытием. Испытаниями подтверждена высокая надежность покрытия.

Похожие патенты RU2247103C2

название год авторы номер документа
ТЕРМОГАЗОГЕНЕРАТОР ДЛЯ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПРОДУКТИВНОГО ПЛАСТА НЕФТЯНЫХ СКВАЖИН И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2000
  • Кусакин Ю.Н.
  • Панов И.В.
  • Талалаев А.П.
  • Куценко Г.В.
  • Поносова Л.М.
  • Знаменская Л.Б.
  • Петунин Г.И.
  • Устюжанин А.А.
RU2184220C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ПОРОХОВЫХ ЗАРЯДОВ ГЕНЕРАТОРА ДАВЛЕНИЯ 2012
  • Каляев Сергей Николаевич
  • Семенов Сергей Анатольевич
RU2533129C2
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2009
  • Поваров Сергей Александрович
  • Мельник Геннадий Иванович
  • Шабалин Владимир Михайлович
  • Хорев Николай Акимович
  • Макаровец Николай Александрович
  • Медведев Владимир Иванович
  • Петуркин Дмитрий Михайлович
  • Ерохин Владимир Евгеньевич
  • Соколов Игорь Юрьевич
  • Трегубов Виктор Иванович
  • Амарантов Георгий Николаевич
  • Колач Петр Кузьмич
  • Зверева Инна Григорьевна
  • Валеев Наиль Сабирзянович
  • Новожилова Ольга Николаевна
RU2416732C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2002
  • Метелёв А.И.
  • Самойленко А.Ф.
  • Меркулова Л.П.
  • Кошелева Т.А.
RU2212395C1
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2004
  • Валеев Н.С.
  • Барсукова С.П.
  • Ямпольская В.Д.
  • Зверева И.Г.
  • Балабанов Г.К.
  • Державинский Н.В.
  • Колесников В.И.
  • Талалаев А.П.
RU2263812C1
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2003
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Горбунов Д.В.
  • Иванов В.Е.
  • Валеев Н.С.
  • Зверева И.Г.
  • Ямпольская В.Д.
  • Барсукова С.П.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Вронский Н.М.
  • Дудка В.Д.
  • Коликов В.А.
  • Сурначев А.Ф.
  • Швыкин Ю.С.
  • Злотников М.Н.
  • Пастор Т.И.
  • Морозов В.Д.
RU2262612C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОЧНОСКРЕПЛЕННОГО С КОРПУСОМ РАКЕТНОГО ДВИГАТЕЛЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2008
  • Сидоров Олег Иванович
  • Поисова Тамара Петровна
  • Хайруллин Зиятдин Ялалтдинович
  • Паршина Елизавета Ивановна
  • Метелёв Александр Иванович
  • Самойленко Александр Федорович
  • Милёхин Юрий Михайлович
  • Меркулов Владислав Михайлович
  • Банзула Юрий Борисович
  • Капитонов Александр Владимирович
  • Парфёнова Нина Никитична
RU2374213C1
СПОСООБ ИЗГОТОВЛЕНИЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЁРДОГО ТОПЛИВА 2003
  • Метелёв А.И.
  • Самойленко А.Ф.
  • Сидоров О.И.
  • Матвеев А.А.
  • Капитонов А.В.
  • Банзула Ю.Б.
  • Меркулов В.М.
RU2242451C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2018
  • Граменицкий Михаил Дмитриевич
  • Гусев Артем Васильевич
  • Липаткин Алексей Михайлович
  • Мухранский Владимир Михайлович
RU2711892C1
УСТРОЙСТВО ДЛЯ ТЕРМОБАРОХИМИЧЕСКОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПРОДУКТИВНОГО ПЛАСТА СКВАЖИН 2002
  • Балдин А.В.
  • Новоселов Н.И.
  • Кусакин Ю.Н.
  • Куценко Г.В.
  • Петунин Г.И.
  • Талалаев А.П.
RU2235197C2

Реферат патента 2005 года ТЕРМОСТОЙКОЕ ГИДРОИЗОЛЯЦИОННОЕ ПОКРЫТИЕ ДЛЯ НАНЕСЕНИЯ НА ПОВЕРХНОСТЬ ТВЕРДОТОПЛИВНОГО СКВАЖИННОГО ЗАРЯДА И СПОСОБ ЕГО НАНЕСЕНИЯ

Изобретение относится к гидроизоляционным материалам для термогазогенераторных твердотопливных скважинных зарядов, используемых для обработок нефтяных, нагнетательных и газовых скважин с целью повышения их производительности, и предназначено для защиты поверхности твердотопливных скважинных зарядов от воздействия скважинной жидкости. Предложено термостойкое гидроизоляционное покрытие для нанесения на поверхность твердотопливного скважинного заряда, состоящее из связующего полидиенуретанэпоксидного олигомерного каучука, отвердителя - метафенилендиамина, наполнителя - углерода технического или углерода технического и аэросила. Нанесение этого покрытия на поверхность скважинного заряда осуществляется путем двукратного погружения заряда в разбавленный состав с выдержкой после каждого погружения в течение 5-10 с и отверждения. Изобретение направлено на расширение температурного диапазона эксплуатации термогазогенераторов, повышение надежности скрепления покрытия с топливом, повышение технологичности процесса нанесения гидроизоляционного покрытия при обеспечении полного сгорания последнего, снижение стоимости термогазогенератора. 2 н. п. ф-лы.

Формула изобретения RU 2 247 103 C2

1. Термостойкое гидроизоляционное покрытие для нанесения на поверхность твердотопливного скважинного заряда, отличающееся тем, что оно состоит из связующего - полидиенуретанэпоксидного олигомерного каучука, отвердителя - метафенилендиамина, наполнителя - углерода технического при следующем соотношении компонентов, мас.ч.:

Полидиенуретанэпоксидный олигомерный каучук 100

Метафенилендиамин 0,5-2,0

Углерод технический 16,0-17,0

или оно состоит из связующего - полидиенуретанэпоксидного олигомерного каучука, отвердителя - метафенилендиамина, наполнителя - углерода технического и аэросила при следующем соотношении компонентов, мас.ч.:

Полидиенуретанэпоксидный олигомерный каучук 100

Метафенилендиамин 0,5-2,0

Углерод технический 12,0-13,0

Аэросил 4,0-5,0

2. Способ нанесения термостойкого гидроизоляционного покрытия на поверхность твердотопливного скважинного заряда, отличающийся тем, что используют термостойкое гидроизоляционное покрытие по п.1 в разбавленном виде, для чего его компоненты смешивают при температуре 45-65°С в течение 1,0-1,5 ч при вакуумировании с остаточным давлением не более 20 мм рт.ст., полученную смесь разбавляют при массовом соотношении ее и разбавителя от 1:9 до 1:19, охлаждают до температуры 15-25°С и наносят на поверхность твердотопливного скважинного заряда путем двукратного погружения заряда в нее с выдержкой после каждого погружения в течение 5-10 с и отверждения при температуре 20-30°С в течение не менее 24 ч, причем в качестве разбавителя используют смесь 1,0 мас.ч. ацетона и 1,5-2,0 мас.ч. хладона.

Документы, цитированные в отчете о поиске Патент 2005 года RU2247103C2

ТЕРМОГАЗОГЕНЕРАТОР ДЛЯ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПРОДУКТИВНОГО ПЛАСТА НЕФТЯНЫХ СКВАЖИН И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2000
  • Кусакин Ю.Н.
  • Панов И.В.
  • Талалаев А.П.
  • Куценко Г.В.
  • Поносова Л.М.
  • Знаменская Л.Б.
  • Петунин Г.И.
  • Устюжанин А.А.
RU2184220C2
ГИДРОСИСТЕМА С СИНХРОННЫМ УПРАВЛЕНИЕМ 1997
  • Макаров В.В.
  • Лебедев А.В.
RU2150552C1
US 3650858 А, 21.03.1972
Краткий энциклопедический словарь "Энергетические конденсированные системы", ред
Жуков Б.П., М., Янус-к, 2000 с.69-70, с.263-264.

RU 2 247 103 C2

Авторы

Кусакин Ю.Н.

Валеев Н.С.

Устюжанин А.А.

Зверева И.Г.

Куценко Г.В.

Талалаев А.П.

Балдин А.В.

Новоселов Н.И.

Даты

2005-02-27Публикация

2003-02-06Подача