Изобретение относится к тепломассообменным аппаратам и может быть использовано в энергетической и смежных с ней отраслях промышленности.
Известен теплообменник, содержащий установленный с возможностью вращения смеситель с соосно расположенным один в другом на его входном торце патрубками [А.С. СССР №1038785, F 28 С 3/06, опубл. 30.08.83, БИ №32].
Недостатком известного аппарата является, с одной стороны, низкая интенсивность процесса, обусловленная неравномерностью контакта фаз, с другой - производительность аппарата, ограниченная предельными скоростями потоков.
Наиболее близким предлагаемому техническому решению является аппарат для проведения процессов тепломассообмена, например, между газом и жидкостью или несмешивающимися жидкостями, содержащий корпус с размещенным в нем вращающимся контактным элементом, выполненным в виде колеса, состоящего из концентрических частей и снабженного радиально расположенными диффузорами [А.С. СССР №176562, В 01 d, опубл. 17.11.65, БИ №23].
Недостатком известного аппарата является невысокая эффективность процесса тепломассообмена вследствие непродолжительности контакта фаз, а также ограничение производительности, обусловленное низкой пропускной способностью аппарата.
Задачей изобретения является повышение эффективности процесса тепломассообмена и производительности аппарата за счет увеличения коэффициента инжекции.
Поставленная задача решается разработкой аппарата для проведения процессов тепломассообмена, например, между газом и жидкостью или несмешивающимися жидкостями, содержащего корпус, выходной патрубок которого имеет коноидальную форму. Внутри корпуса аппарата расположен свободно вращающийся в нем ротор, снабженный радиально расположенными диффузорами, который состоит из внешнего корпуса и периферийной части, причем внутри внешнего корпуса расположен жестко связанный с ним осесимметричный круговой канал с перегородками.
Предлагаемый аппарат схематично представлен на фиг.1, на фиг.2 - разрез аппарата на фиг.1.
Аппарат содержит корпус 1, выходной патрубок 2 которого имеет коноидальную форму. Внутри корпуса аппарата расположен свободно вращающийся ротор 3, состоящий из внешнего корпуса 4 и периферийной части 5.
Внутри корпуса 4 расположен жестко связанный с ним осесимметричный круговой канал 6 с перегородками 7, используемыми для снижения эффекта проскальзывания инжектирующей жидкости внутри канала 6. Выходное сечение канала выполнено в виде призматических насадок 8, размещенных непрерывным рядом по окружности средней линии осесимметричного кругового канала 6.
Между внутренними стенками корпуса 4 и внешними стенками осесимметричного кругового канала 6 расположена камера 9, в объеме которой установлены перегородки 10. Подача инжектирующей жидкости в объем осесимметричного кругового канала 6 осуществляется через питающие окна 11 трубы 12, являющейся одновременно и приводным полым валом ротора 3. Подачу инжектируемого пара в камеру 9 осуществляют через штуцера 13 карманов 14. Герметичность рабочих камер обеспечивается сочетанием лабиринтных и сальниковых уплотнений.
Тепломассообменный аппарат работает следующим образом. После включения привода при помощи клиноременной передачи осуществляется вращение вала и связанного с ним ротора 3. Одновременно в полый вал 12 подается вода, а в штуцеры 13 карманов 14 - пар. Под действием центробежного статического давления высоконапорная инжектирующая жидкость через питающие окна 11 подается во вращающийся осесимметричный кольцевой канал 6, захватывается перегородками 7 и с большой скоростью выбрасывается из призматических насадок 8 в объем внешнего корпуса 4 ротора 3 и далее попадает в периферийную часть 5. Под действием разряжения, создаваемого высоконапорной инжектирующей жидкостью, и центробежного давления, сообщаемого перегородками 7, в камеру 9 поступает инжектируемый поток-пар, который далее устремляется в периферийную часть 5 - зону интенсивного турбулентного смешения, где за счет развитой поверхности контакта фаз обеспечивается более глубокое использование энтальпии инжектируемого потока, что в конечном счете способствует интенсификации процесса тепломассообмена.
Далее двухфазный поток (вода и несконденсировавшийся пар) выбрасывается из периферийной части в корпус 1, являющийся сборником парожидкостного потока. При этом размеры корпуса 1 по линии тока с ростом угла охвата свободно вращающегося ротора 3 необходимо увеличивать, так как постоянно растет объем сконденсированного пара по проточной части корпуса аппарата.
Частицы парожидкостного потока при выходе из свободно вращающегося ротора 3 будут описывать сложные линии тока, которые определяют как конфигурацию корпуса 1, так и в конечном счете эффективность процесса тепломассообмена в аппарате и его высокую производительность за счет увеличения коэффициента инжекции.
По мере движения парожидкостного потока в проточной части корпуса непрерывно происходит конденсация пара в жидкость, завершающаяся в выходном патрубке 2. Кинетическая энергия среды в корпусе 1 преобразуется в потенциальную - давления, формирование которого в корпусе 1 завершается в присоединенном коноидальном выходном патрубке 2 относительно параметров в трубопроводе.
название | год | авторы | номер документа |
---|---|---|---|
АППАРАТ ДЛЯ ПРОВЕДЕНИЯ ПРОЦЕССОВ ТЕПЛОМАССООБМЕНА | 2006 |
|
RU2306518C1 |
РАСПЫЛИТЕЛЬНАЯ СУШИЛКА | 2018 |
|
RU2669893C1 |
РАСПЫЛИТЕЛЬНАЯ СУШИЛКА ДЛЯ ЖИДКИХ ПРОДУКТОВ | 2017 |
|
RU2645796C1 |
ВИХРЕВОЙ СТРУЙНЫЙ АППАРАТ | 1994 |
|
RU2076250C1 |
КАМЕРА ДЛЯ ПРОВЕДЕНИЯ ТЕПЛОМАССООБМЕНА МЕЖДУ ДИСПЕРГИРОВАННЫМИ ЧАСТИЦАМИ И ГАЗООБРАЗНОЙ СРЕДОЙ | 2017 |
|
RU2659008C1 |
МАССООБМЕННЫЙ АППАРАТ | 1998 |
|
RU2138314C1 |
ВИХРЕВОЙ СТРУЙНЫЙ АППАРАТ И СПОСОБЫ ЕГО ВКЛЮЧЕНИЯ (ВАРИАНТЫ) | 2004 |
|
RU2262008C1 |
КОНДИЦИОНЕР | 2015 |
|
RU2600899C1 |
ТЕПЛОВОЙ КАВИТАЦИОННЫЙ ГЕНЕРАТОР | 2010 |
|
RU2422733C1 |
ПЫЛЕУЛОВИТЕЛЬ ВИХРЕВОЙ С СИСТЕМОЙ ПОЖАРОВЗРЫВОБЕЗОПАСНОСТИ | 2017 |
|
RU2668028C1 |
Изобретение предназначено для применения в энергетической промышленности и в смежных с ней отраслях. Аппарат для проведения процессов тепломассообмена содержит корпус с размещенным в нем вращающимся ротором, снабженным радиально расположенными диффузорами, расположенными свободно вращающимся в корпусе аппарата, выходной патрубок которого имеет коноидальную форму, ротор состоит из внешнего корпуса и периферийной части, причем внутри корпуса расположен жестко связанный с ним осесимметричный круговой канал с перегородками. Изобретение позволяет повысить эффективность процесса тепломассообмена и производительность аппарата за счет увеличения коэффициента инжекции. 2 ил.
Аппарат для проведения процессов тепломассообмена, содержащий корпус с размещенным в нем вращающимся ротором, снабженным радиально расположенными диффузорами, отличающийся тем, что ротор расположен свободно вращающимся в корпусе аппарата, выходной патрубок которого имеет коноидальную форму, ротор состоит из внешнего корпуса и периферийной части, причем внутри корпуса расположен жестко связанный с ним осесимметричный круговой канал с перегородками.
АППАРАТ ДЛЯ ПРОВЕДЕНИЯ ПРОЦЕССОВ ТЕПЛОМАССООБМЕНА | 0 |
|
SU176562A1 |
Теплообменник с вращающейся рабочей поверхностью и неподвижными лопатками | 1948 |
|
SU125257A1 |
GB 1462901 A, 26.01.1977 | |||
DE 4222950 A, 20.01.1994 | |||
УСТРОЙСТВО ДЛЯ РАСТВОРЕНИЯ, ЭМУЛЬГИРОВАНИЯ И ДИСПЕРГИРОВАНИЯ РАЗЛИЧНЫХ МАТЕРИАЛОВ | 1999 |
|
RU2149680C1 |
Роторный теплообменник воздушного охлаждения | 1979 |
|
SU918764A2 |
Роторный пленочно-контактный теплообменник | 1983 |
|
SU1206600A1 |
Авторы
Даты
2005-04-10—Публикация
2002-06-13—Подача