Изобретение относится к газовой промышленности и может быть использовано для определения количества воды в паровой фазе, содержащейся в продукции газовых скважин для установления характера обработки геологического разреза, прогнозирования процесса обводнения скважин, оценки качества проведенных работ по водоизоляции.
В настоящее время контроль за обводнением газовых скважин сводится к определению положения поверхности газоводяного контакта (ГВК) и решается методами промысловой геофизики (ГИС). Для скважин, в продукции которых зафиксировано наличие пластовой воды, положение ГВК определяют путем сопоставления конструкции скважины и результатов специальных исследований. Прогнозировать появление пластовой воды даже в течение ближайшего времени (1,5-2 года) без проведения расчетов на газогидродинамической модели до недавнего времени не представлялось возможным /Газодинамический контроль за эксплуатацией скважин на месторождениях и подземных хранилищах газа промыслово-геофизическими методами: Методические рекомендации. -М.: Изд-во “ОХО Миннефтепрома СССР”, 1991. 160 с./.
Геофизический контроль процесса обводнения имеет следующие недостатки: высокая стоимость исследований, отсутствие количественной оценки содержания воды в продукции скважины. Количество имеющихся наблюдательных (неперфорированных) и вертикальных действующих скважин с геологическими забоями на уровне начального ГВК, как правило, не обеспечивает степень детализации, достаточную для эффективного прогнозирования обводнения скважин всего эксплуатационного фонда. К моменту вступления месторождения в период падающей добычи ситуация еще более ухудшается вследствие обводнения действующих скважин, использовавшихся для ГИС-контроля, проведения водоизоляционных работ с установкой цементных мостов, перекрывающих интервал ГВК, что делает невозможным отслеживание его дальнейшего продвижения.
Известен способ газоконденсатных исследований скважин, проводимых на устье скважин, включающий сепарацию продукции, отбор жидкой и твердой фаз для последующего лабораторного анализа, при этом газовый конденсат в паровой фазе отводят от места исследования, собирают и утилизируют /Пат. 2081311РФ, МПК6 Е 21 В 47/00, опубл. 10.06.1997/.
Способ определения влагосодержания продукции скважины путем проведения специальных исследований с применением известных сепарационных установок имеет следующие недостатки: значительный выпуск газа в атмосферу, трудоемкость, необходимость конструктивных изменений в устьевой обвязке скважины (для подключения сепараторов), ограниченность во времени периодом положительных температур окружающей среды.
Все известные способы не фиксируют наличие воды в паровой фазе.
Задачей, на решение которой направлено заявляемое изобретение, является разработка способа, позволяющего оперативно получать информацию о влагосодержании продукции газовых скважин практически без выпуска газа в атмосферу, без проведения дополнительных геофизических и специальных исследований, т.е. с минимальными ограничениями условий применения выявлять и количественно оценивать наличие воды в продукции газовых скважин.
При осуществлении изобретения поставленная задача решается за счет достижения технического результата, который заключается в повышении точности определения влагосодержания продукции газовых скважин за счет учета паровой фазы.
Указанный технический результат достигается тем, что в способе экспрессного определения влагосодержания продукции газовых скважин, оборудованных устьевой обвязкой, имеющей устьевое гнездо манометра, включающем отбор продукции на устье скважины, особенностью является то, что отбор продукции осуществляют через устьевое гнездо манометра, а измерения по определению влагосодержания продукции газовых скважин проводят в паровой фазе непосредственно на устье скважины. Измерения по определению влагосодержания продукции газовых скважин осуществляют сорбционно-емкостным методом.
Причинно-следственная связь между существенными признаками изобретения и заявленным техническим результатом следующая:
Способ основан на эффекте испарения воды в газ при изменении термобарических условий в результате отбора газа из продуктивных интервалов. Замеры осуществляются непосредственно на устье скважины с отводом анализируемого газа через устьевое гнездо манометра.
Следует отметить, что понятие влажности добываемого газа практически не рассматривается как величина, характеризующая процесс разработки месторождения. Обычно влагосодержание газа, прошедшего осушку на установках комплексной подготовки газа, характеризуется точкой росы, определяемой как температура, при которой парциальное давление насыщенного водяного пара равно парциальному давлению водяного пара в рассматриваемом газе. Однако этот параметр интересен в основном с точки зрения магистрального транспорта газа.
Очевидно, что влагосодержание газа от поверхности ГВК величина постоянная, а в зоне вытеснения определяется текущими термобарическими условиями, влияющими на испарение поровой воды в добываемый газ. По мере приближения ГВК к интервалу перфорации или заколонном перетоке газа из зоны вытеснения влагосодержание добываемого газа будет изменяться, что может быть зафиксировано устьевым влагомером. Поскольку в данном случае пластовая вода в продукции газовых скважин присутствует исключительно в паровой фазе, иные способы исследований результата не дадут.
Для проведения измерений по определению влажности продукции газовых скважин непосредственно на устье скважины использовали устройство, включающее термогигрометр “ИВА-6”, пробоотборное устройство для подключения к устьевой обвязке через устьевое гнездо манометра (УГМ) и отбора анализируемой продукции непосредственно в полевых условиях, регистрирующие аппаратно-программные средства для записи данных. В состав термогигрометра входят первичный преобразователь и измерительный блок, соединенные гибким кабелем.
Термогигрометр “ИВА-6” выполнен в соответствии с ТУ 4311-001-18513042-01 и внесен в Государственный реестр средств измерений с регистрационным номером №13561-01. “Ива-6” представляет собой автоматический, цифровой, одноканальный, многофункциональный термогигрометр непрерывного действия. Первичный преобразователь термогигрометра содержит чувствительные элементы влажности, температуры (например, кремниевый цифровой датчик) и преобразователь влажности “емкость-частота”. Стенд для калибровки и поверки прибора по каналу влажности построен на основе эталонного генератора влажности газа типа “Родник 2”, газовой измерительной схемы взвешивания сухого газа кулонометрическим гигрометром типа “Байкал”, в качестве эталона сравнения в диапазоне измерения влажности и позволяет проводить автоматическую калибровку. “ИВА-6” имеет диапазон измерения по точке росы от -50 до +50°С при нижней границе диапазона влажности не менее 0,03 г/м3.
Способ основывается на следующих физических предпосылках.
Для измерения относительной влажности (как показателя паровой фазы) используется сорбционно-емкостной чувствительный элемент, принцип действия которого основан на зависимости диэлектрической проницаемости полимерного влагочувствительного слоя от влажности окружающей среды. Выходная частота (Fe) преобразователя влажности связана с измеряемой относительной влажностью ψ полиномными функциями:
ψ=ψ0+k1(Fв-F0)+k2(Fв-F0)2+k3(Fв-F0)3,
где ψ - относительная влажность, %;
ψ, k1, k2, k3, F0 - коэффициенты полинома, величины которых определяются в процессе калибровки прибора.
В приборе градуировочная характеристика сенсора влажности вследствие ее нелинейности в области низких концентраций описывается двумя полиномами третьей степени, коэффициенты которых определяются в процессе калибровки, для диапазонов измерения относительной влажности 4-100% и 0-4%. Данные калибровки хранятся в энергонезависимой памяти микроконтроллера.
Абсолютная влажность газа А (г/м3) связана с его относительной влажностью следующей зависимостью:
А=6,2198 ψPS/(10000(Е+273,16)),
где PS - парциальное давление насыщенного водяного пара, (Па), при температуре Т (°С)
Пример. Полевые испытания проводили на Ямбурском. Всего было выполнено более 740 замеров влажности продукции (потока газа) на устье газовых скважин. Замерами было охвачено свыше 500 скважин.
Полевые измерения влагосодержания продукции газовых скважин проводили с помощью передвижной лаборатории. Отбор продукции осуществляли через устьевое гнездо манометра (УГМ) в системе устьевой обвязки с последующим выпуском в атмосферу. Для подключения пробоотборного устройства к продуктивной линии скважины через УГМ использовали шланг высокого давления с предварительным закрытием запорной арматуры УГМ. Давление газа на датчике влажности поддерживалось на уровне 1 ата. Измерения проводили при температуре окружающего воздуха от -20°С до +30°С. Продолжительность измерения определения влагосодержания составила 60 мин при работающей скважине.
Результаты измерений представлены в виде графиков, где на фиг.1 приведены графики измерения влажности 1 продукции газовой скважины и температуры 2, выполненные с целью оценки качества водоизоляционных работ, на фиг.2 приведены графики измерения влажности 1 продукции газовой скважины и температуры 2, выполненные в рамках контроля за разработкой залежи на определенном временном интервале (точки замера).
Результаты измерений, представленные на фиг.1, свидетельствуют о том, что в данном случае водоизоляция выполнена некачественно. В продукции скважины зафиксировано избыточное содержание воды.
Средний показатель относительной влажности 0,30 г/м3 на одной из исследуемых скважин свидетельствует о том, что данная скважина сухая, отрабатывается верхняя часть разреза, избыточного влагосодержания не наблюдается (см. фиг.2).
Таким образом, определение наличия влаги в паровой фазе свидетельствует о том, что продукция идет из зоны недонасыщения (области поверхности газоводяного контакта). Следовательно, можно оперативно контролировать процесс обводнения залежи, т.е. выявить интервал пласта при большом этаже газоносности, оперативно определить, откуда, с какого интервала, с какой глубины поступает продукция газовых скважин, и разработать соответствующие геолого-технические мероприятия. Способ может быть использован как экспресс-метод определения влагосодержания продукции газовых скважин в процессе контроля за разработкой месторождения. При этом определения влагосодержания можно совместить с другими исследованиями скважины. Эффективность способа определяется сокращением числа лабораторных исследований за счет расширения промысловых, повышением точности и незначительным выбросом продукции в атмосферу.
название | год | авторы | номер документа |
---|---|---|---|
КОМБИНИРОВАННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ПРОДУКЦИИ ГАЗОВЫХ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2354823C1 |
Способ выявления скважин - обводнительниц и водоприточных интервалов в газовых скважинах | 2016 |
|
RU2611131C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ПРОДУКЦИИ ГАЗОВЫХ СКВАЖИН | 2004 |
|
RU2263781C1 |
СПОСОБ ПОШАГОВОГО РЕГУЛИРОВАНИЯ ДОБЫЧИ ГАЗА | 2015 |
|
RU2593287C1 |
СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН | 2015 |
|
RU2607004C1 |
СПОСОБ ЭКСПЛУАТАЦИИ ОБВОДНЕННЫХ ГАЗОВЫХ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2012 |
|
RU2484239C2 |
СПОСОБ КОНТРОЛЯ ПРОЦЕССА ОБВОДНЕНИЯ ГАЗОВЫХ СКВАЖИН | 2015 |
|
RU2604101C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА ГАЗОВОЙ СКВАЖИНЫ, ОБЕСПЕЧИВАЮЩЕГО ВЫНОС КОНДЕНСАЦИОННОЙ ЖИДКОСТИ С ЗАБОЯ | 2011 |
|
RU2474686C1 |
СПОСОБ ОЦЕНКИ ОБВОДНЕННОСТИ ПРОДУКЦИИ НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЫ | 2015 |
|
RU2610941C1 |
СПОСОБ КОНТРОЛЯ ЗА ОБВОДНЕНИЕМ СКВАЖИН И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2021 |
|
RU2789259C1 |
Изобретение относится к нефтяной и газовой промышленности и может быть использовано для определения количества воды, содержащейся в продукции газовых скважин. Способ применим на газовых скважинах, оборудованных устьевой обвязкой, имеющей устьевое гнездо манометра. Осуществляют отбор продукции на устье скважины через устьевое гнездо манометра. Измерения по определению влагосодержания продукции скважин проводят в паровой фазе непосредственно на устье скважины. Указанные измерения по определению влагосодержания продукции преимущественно осуществляют сорбционно-емкостным методом. Изобретение позволяет повысить точность определения влагосодержания за счет учета паровой фазы непосредственно на устье скважины. 1 з.п.ф-лы, 2 ил.
СПОСОБ ГАЗОКОНДЕНСАТНЫХ ИССЛЕДОВАНИЙ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2081311C1 |
СПОСОБ ГАЗОДИНАМИЧЕСКОГО ИССЛЕДОВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1990 |
|
RU2070289C1 |
RU 2059066 С1, 27.04.1996 | |||
Способ исследования продуктивных интервалов пласта и устройство для его осуществления | 1980 |
|
SU983260A1 |
ГРИЦЕНКО А.И | |||
и др | |||
Руководство по исследованию скважин | |||
- М.: Наука, 1995, с.462-465, 499-503 | |||
МИНЕЕВ Б.П | |||
и др | |||
Практическое руководство по испытанию скважин | |||
- М.: Недра, 1981, с.87-88, рис.35, поз.5. |
Авторы
Даты
2005-06-27—Публикация
2004-06-16—Подача