СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН Российский патент 2017 года по МПК E21B47/10 E21B47/06 G06F17/00 

Описание патента на изобретение RU2607004C1

Изобретение относится к нефтегазовой промышленности и может быть использовано при разработке газовых и газоконденсатных месторождений для контроля технического состояния скважин и оперативного изменения технологического режима их эксплуатации.

Техническое состояние скважин определяется наличием или отсутствием водопритока в ствол скважины, наличием или отсутствием песчано-жидкостной пробки на забое скважины, которая может полностью или частично перекрывать интервалы перфорации, наличием или отсутствием газовых гидратов в стволе скважины, которые могут привести к полной или частичной закупорке ствола, срыву гидратной пробки потоком газа и ее ударно-разрушительному воздействию на устьевую обвязку.

Техническое состояние скважины наиболее достоверно определяется методами промысловой геофизики. Наличие притока жидкости в ствол скважины наиболее уверенно фиксируется на термограмме по положительной аномалии дросселирования. Косвенным образом, методом шумоиндикации. Установить характер жидкости позволяют методы определения плотности и состава заполнителя ствола (барометрия, влагометрия, термоанемометрия, гамма-гамма плотностиметрия) (Газодинамический контроль за эксплуатацией скважин на месторождениях и подземных хранилищах газа промыслово-геофизическими методами. ГГК «Газпром». Методические рекомендации. - М.: Типография ОХО Миннефтепрома СССР, 1991. - 160 с).

Определение наличия водопритока геофизическими методами имеет следующие недостатки. Высокая стоимость исследований. Отсутствие количественной оценки содержания воды в продукции скважины.

Известен способ контроля за процессом обводнения газовых скважин путем проведения газодинамических исследований скважин методом установившихся отборов с применением малогабаритного устройства, состоящего из сепаратора, расходомера и емкости для сбора отсепарированных примесей (А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995, с. 499).

Недостатком данного способа является необходимость проведения химических анализов для определения природы отсепарированной жидкости. Кроме того, значения коэффициентов фильтрационного сопротивления a и b, которые получают в результате обработки газодинамических исследований скважин методом установившихся отборов без анализа динамики этих коэффициентов во времени, не являются информативными с точки зрения поступления в залежь пластовых и подошвенных вод. Также недостатком способа является то, что его реализация возможна только в период положительных температур во избежание замерзания жидкости.

Известен способ контроля формирования песчано-жидкостной пробки на забое скважины путем периодического шаблонирования скважины с отбивкой забоя периодически проводимых геологическими службами предприятий (А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995, с. 499).

Недостатком данного способа являются значительные временные затраты. Проведение данной операции на сеноманской скважине силами исследовательской бригады занимает порядка 4 часов, в процессе которой скважина простаивает, поэтому периодичность замеров допускается не более 1 раза в год.

Известен способ определения влагосодержания продукции газовых скважин, оборудованных устьевой обвязкой, включающий подачу газа из скважины в рабочую камеру, в которой контролируют давление и разность давлений газа в верхней и нижней частях рабочей камеры и осуществляют измерение относительной влажности газа, после стабилизации давления в рабочей камере поступивший газ изолируют, последовательно закрывая запорно-регулирующие элементы сначала на выпускном коллекторе рабочей камеры, а затем на впускном коллекторе рабочей камеры, после чего измеряют относительную влажность газа в верхней и нижней частях рабочей камеры сорбционно-емкостными элементами, установленными в верхней и нижней горизонтальных плоских стенках рабочей камеры, и если величины относительной влажности в верхней и нижней частях рабочей камеры равны и составляют величину менее 100%, то ее и принимают за величину относительной влажности газа, а если в нижней части камеры величина относительной влажности равна 100%, то включают нагрев камеры и нагревают газ в рабочей камере до тех пор, пока в верхней и нижней частях камеры не будет измерена одинаковая величина относительной влажности газа ниже 100%, а если на основании замеров относительной влажности сорбционно-емкостными элементами в верхней и нижней частях рабочей камеры после нагрева не будет достигнута одинаковая величина относительной влажности газа ниже 100%, то величину влажности газа определяют по плотности газа гидростатическим методом на основании разности давлений газа в верхней и нижней частях рабочей камеры и зафиксированной температуры нагретого газа. (Патент РФ №2354823, опубл. 10.05.2009).

Наиболее близким принятым за прототип является способ контроля за процессом обводнения газовых скважин, включающий проведение стандартных газодинамических исследований скважин методом установившихся отборов, определение коэффициентов фильтрационного сопротивления a и b, анализ динамики коэффициентов фильтрационного сопротивления a и b во времени, построение графиков их изменения во времени, сравнение значений коэффициентов фильтрационного сопротивления a и b с предыдущими, вывод о наличии пластовых вод в призабойной зоне пласта по скачкообразному увеличению значений коэффициентов фильтрационного сопротивления (Патент РФ 2202692, опубл. 20.04.2003).

Недостатками данного способа являются сравнительно большие ошибки при определении даты поступления пластовых и/или подошвенных вод, что обусловлено большими интервалами времени между датами газодинамических исследований скважин методом установившихся отборов.

Общим недостатком всех приведенных выше способов является малая дискретность замеров, не позволяющая оперативно фиксировать изменения технического состояния скважин.

Задачей, на решение которой направлено предлагаемое изобретение, является создание способа оперативного контроля за изменением технического состояния скважин по данным эксплуатации.

Технический результат - повышение эффективности промышленной безопасности эксплуатации газовых и газоконденсатных скважин путем фиксирования с высокой дискретностью изменений технического состояния скважин по данным устьевой телеметрии в процессе их нормальной эксплуатации на технологическом режиме, заданном проектом разработки месторождения и оперативной корректировки технологического режима на основании полученных результатов.

Технический результат достигается тем, что способ оперативного контроля технического состояния газовых и газоконденсатных скважин включает проведение стандартных газодинамических исследований (ГДИ) скважин на стационарных режимах фильтрации с построением зависимости устьевых параметров давления и температуры, и давления на забое скважины от расхода газа, контроль соответствия величины фиксируемых в процессе эксплуатации устьевых параметров величине параметров, определяемой зависимостью, построенной по результатам газодинамических исследований при текущем расходе газа, согласно изобретению осуществляют контроль давления в затрубном пространстве скважины с помощью датчика давления, установленного на скважине и по показаниям которого с заданным шагом квантования, по барометрической формуле автоматизированная система управления технологическими процессами (АСУ ТП) или информационно-управляющая система (ИУС) оперативно моделирует давление на забое скважины и сравнивает его с величиной забойного давления, определяемой зависимостью, построенной по результатам газодинамических исследований при текущем расходе газа.

Если при текущем расходе величина забойного давления постепенно снижается и становится меньше показателя, определяемого зависимостью, построенной по результатам газодинамических исследований с учетом поправки на снижение пластового давления, то автоматизированная система управления технологическими процессами (или ИУС) выдает сообщение оператору о том, что продуктивность скважины снижается по причине формирования песчаной пробки на забое и требуется снизить расход газа.

Если величина потерь давления в стволе скважины, определяемая как разность забойного и устьевого давлений, растет и становится выше показателя при газодинамических исследованиях при текущем расходе газа, автоматизированная система управления технологическими процессами (или ИУС) выдает сообщение о том, что увеличилось количество воды в продукции скважины и требуется проведение геофизических исследований скважины.

Если температура на устье скважины опускается ниже температуры гидратообразования при текущем устьевом давлении, наблюдается рост забойного давления с одновременным снижением устьевого давления и/или расхода газа, автоматизированная система управления технологическими процессами (или ИУС) выдает сообщение об образовании в стволе скважины газовых гидратов и необходимости немедленной подачи на забой ингибитора гидратообразования.

Оперативное моделирование давления на забое скважины и его динамики осуществляют, используя результаты фактических измерений расхода газа, производимых с заданным шагом квантования, например по формуле:

,

где Рпл - пластовое давление, а и b - коэффициенты фильтрационного сопротивления, зависящие от несовершенства скважины, геометрии зоны дренирования, параметров пласта, свойства газа, и которые определяют по результатам ГДИ, а оперативные моделирование зависимости величины устьевого давления от расхода газа определяют из результатов фактических измерений давления на забое скважины Рз, ее характеристик и текущих параметров добываемого флюида, например, по формуле:

,

где ,

,

D - внутренний диаметр фонтанных труб, м,

Q - дебит скважины, тыс. м3/сут,

Рз - давление на забое скважины, МПа

Ру - давление устья фонтанных труб, МПа,

L - расстояние от устья до забоя скважины, м,

Zср - средний коэффициент сверхсжимаемости газа,

Тср - средняя по стволу скважины температура газа, К,

- средняя по стволу скважины плотность газа, кг/м3,

λ - коэффициент сопротивления труб, зависящий от числа Рейнольдса, средней скорости потока и вязкости газа.

Для оперативного определения давления и температуры добываемого флюида на забое скважины с заданным шагом квантования используют глубинные датчики и линии их связи с наземным оборудованием с величиной инерционности измерений, гарантирующей исключение развития необратимых переходных процессов реализации технологии добычи, и спускаемые в скважину в составе компоновки скважинного оборудования.

Между отличительными признаками и достигаемым техническим результатом существует следующая причинно-следственная связь. Для осуществления оперативного моделирования давления на забое скважины и его динамики используются результаты фактических измерений расхода газа, производимых с заданным шагом квантования. Оперативное моделирование зависимости величины устьевого давления от расхода газа осуществляется с использованием результатов фактических измерений давления на забое скважины, ее характеристик и текущих параметров добываемого флюида. Весь этот комплекс позволяет оперативно контролировать техническое состояние скважин, что повышает эффективность промышленной безопасности при эксплуатации.

Предлагаемый способ оперативного контроля технического состояния газовых и газоконденсатных скважин осуществляют следующим образом.

Устья скважин оборудуют датчиками давления и температуры, узлами замера расхода (дебита) газа/газоконденсатной смеси.

Проводят стандартные газодинамические исследования (ГДИ) скважин на стационарных режимах фильтрации с построением зависимости устьевых параметров (давления и температуры) и давления на забое скважины от расхода газа, контроль соответствия величины фиксируемых в процессе эксплуатации устьевых параметров величине параметров, определяемой зависимостью, построенной по результатам ГДИ при текущем расходе газа.

На скважине устанавливают датчик давления, который контролирует давление в затрубном пространстве скважины и по показаниям которого с заданным шагом квантования по барометрической формуле автоматизированная система управления технологическими процессами (АСУ ТП) оперативно моделирует давление на забое скважины и сравнивает его с величиной забойного давления, определяемой зависимостью, построенной по результатам ГДИ при текущем расходе газа.

Оперативное моделирование давления на забое скважины и его динамики осуществляют, используя результаты фактических измерений расхода газа, производимых с заданным шагом квантования, по формуле:

,

где Рпл - пластовое давление, а и b - коэффициенты фильтрационного сопротивления, зависящие от несовершенства скважины, геометрии зоны дренирования, параметров пласта, свойства газа, и которые определяют по результатам ГДИ.

Если при текущем расходе величина забойного давления постепенно снижается и становится меньше показателя, определяемого зависимостью, построенной по результатам ГДИ с учетом поправки на снижение пластового давления, то АСУ ТП (или ИУС) выдает сообщение оператору о том, что продуктивность скважины снижается по причине формирования песчаной пробки на забое и требуется снизить расход газа.

Оперативное моделирование зависимости величины устьевого давления от расхода газа определяют из результатов фактических измерений давления на забое скважины Рз, ее характеристик и текущих параметров добываемого флюида, например, по формуле:

,

где ,

,

D - внутренний диаметр фонтанных труб, м,

Q - дебит скважины, тыс. м3/сут,

Рз - давление на забое скважины, МПа,

Ру - давление устья фонтанных труб, МПа,

L - расстояние от устья до забоя скважины, м,

Zср - средний коэффициент сверхсжимаемости газа,

Тср - средняя по стволу скважины температура газа, К,

- средняя по стволу скважины плотность газа, кг/м3,

λ - коэффициент сопротивления труб, зависящий от числа Рейнольдса, средней скорости потока и вязкости газа.

Если величина потерь давления в стволе скважины, определяемая как разность забойного и устьевого давлений, растет и становится выше показателя при ГДИ при текущем расходе газа, АСУ ТП (или ИУС) выдает сообщение о том, что увеличилось количество воды в продукции скважины и требуется проведение геофизических исследований скважины.

Для исключения развития необратимых переходных процессов реализации технологии добычи (их бифуркации) АСУ ТП (или ИУС) увеличивает частоту квантования измерений по мере приближения моделируемых и контролируемых параметров к их критическим значениям, выводя соответствующее сообщение оператору, который, исходя из опыта эксплуатации конкретных скважин, может дополнительно увеличить частоту квантования.

Для оперативного определения давления и температуры добываемого флюида на забое скважины с заданным шагом квантования используют глубинные датчики и линии их связи с наземным оборудованием с величиной инерционности измерений, гарантирующей исключение развития необратимых переходных процессов реализации технологии добычи, и спускаемые в скважину в составе компоновки скважинного оборудования.

Похожие патенты RU2607004C1

название год авторы номер документа
СПОСОБ ОПТИМИЗАЦИИ ПЕРИОДИЧНОСТИ ГАЗОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН НА НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА 2017
  • Арно Олег Борисович
  • Ахметшин Баязетдин Саяхетдинович
  • Меркулов Анатолий Васильевич
  • Арабский Анатолий Кузьмич
  • Кирсанов Сергей Александрович
  • Гункин Сергей Иванович
  • Вить Геннадий Евгеньевич
  • Талыбов Этибар Гурбанали Оглы
  • Кожухарь Руслан Леонидович
RU2661502C1
СПОСОБ ПОСТРОЕНИЯ КАРТЫ ИЗОБАР ДЛЯ НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ 2019
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Нигматов Азат Тагирьянович
  • Сопнев Тимур Владимирович
  • Кожухарь Руслан Леонидович
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
RU2722331C1
Способ повышения производительности газовых скважин 2022
  • Пятахин Михаил Валентинович
  • Шулепин Сергей Александрович
  • Оводов Сергей Олегович
RU2798147C1
СПОСОБ ПОСТРОЕНИЯ КАРТ ИЗОБАР 2019
  • Арно Олег Борисович
  • Меркулов Анатолий Васильевич
  • Арабский Анатолий Кузьмич
  • Сопнев Тимур Владимирович
  • Кожухарь Руслан Леонидович
  • Гункин Сергей Иванович
  • Вить Геннадий Евгеньевич
  • Талыбов Этибар Гурбанали Оглы
RU2709046C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО ЗАБОЙНОГО ДАВЛЕНИЯ ГЛУБОКОЙ ГАЗОКОНДЕНСАТНОЙ СКВАЖИНЫ 2022
  • Игнатов Игорь Валериевич
  • Сопнев Тимур Владимирович
  • Сафронов Михаил Юрьевич
  • Осмаковский Александр Александрович
  • Кондратьев Константин Игоревич
  • Валиулин Динар Рафикович
RU2799898C1
СПОСОБ АВТОМАТИЧЕСКОГО ПРОСЛУШИВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА 2016
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Меркулов Анатолий Васильевич
  • Кирсанов Сергей Александрович
  • Гункин Сергей Иванович
  • Вить Геннадий Евгеньевич
  • Талыбов Этибар Гурбанали Оглы
  • Шарафутдинов Руслан Фархатович
  • Левинский Иван Юрьевич
RU2645055C1
СПОСОБ ОПТИМИЗАЦИИ ТЕХНОЛОГИЧЕСКОГО РЕЖИМА РАБОТЫ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН 2015
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Кирсанов Сергей Александрович
  • Меркулов Анатолий Васильевич
  • Худяков Валерий Николаевич
  • Новиков Вадим Игоревич
  • Гункин Сергей Иванович
RU2607326C1
СПОСОБ ПОСТРОЕНИЯ КАРТ ИЗОБАР ДЛЯ НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ 2016
  • Арно Олег Борисович
  • Меркулов Анатолий Васильевич
  • Арабский Анатолий Кузьмич
  • Гункин Сергей Иванович
  • Вить Геннадий Евгеньевич
  • Талыбов Этибар Гурбанали Оглы
RU2634770C1
Способ определения динамического забойного давления газоконденсатной скважины 2018
  • Пеливанов Юрий Павлович
  • Токарев Денис Константинович
  • Плюхин Вадим Александрович
  • Завьялов Николай Афанасьевич
  • Перфильев Дмитрий Николаевич
  • Просужих Максим Юрьевич
RU2684270C1
СПОСОБ УТОЧНЕНИЯ ГЕОЛОГО-ГАЗОДИНАМИЧЕСКОЙ МОДЕЛИ ГАЗОВОЙ ЗАЛЕЖИ ПО ДАННЫМ ЭКСПЛУАТАЦИИ 2017
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Меркулов Анатолий Васильевич
  • Кирсанов Сергей Александрович
  • Гункин Сергей Иванович
  • Вить Геннадий Евгеньевич
  • Талыбов Этибар Гурбанали Оглы
  • Шарафутдинов Руслан Фархатович
  • Левинский Иван Юрьевич
  • Григорьев Борис Афанасьевич
RU2657917C1

Реферат патента 2017 года СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН

Изобретение относится к нефтегазовой промышленности и может быть использовано при разработке газовых и газоконденсатных месторождений. Способ включает проведение стандартных газодинамических исследований скважин на стандартных режимах фильтрации с построением зависимости устьевых параметров (давления и температуры) и давления на забое скважины от расхода газа, контроль соответствия величины фиксируемых в процессе эксплуатации устьевых параметров величине параметров, определяемой зависимостью, построенной по результатам газодинамических исследований (ГДИ) при текущем расходе газа. Осуществляют контроль давления в затрубном пространстве скважины с помощью датчика давления, установленного на скважине и по показаниям которого с заданным шагом квантования, по барометрической формуле автоматизированная система управления технологическими процессами оперативно моделирует давление на забое скважины и сравнивает его с величиной забойного давления, определяемой зависимостью, построенной по результатам ГДИ при текущем расходе газа. Оперативное моделирование давления на забое скважины и его динамики осуществляют, используя результаты фактических измерений расхода газа, производимых с заданным шагом квантования. Оперативное моделирование потерь давления в стволе скважины определяют из результатов фактических измерений давления на забое скважины, ее характеристик и текущих параметров добываемого флюида. Предложенное изобретение позволяет оперативно контролировать техническое состояние скважин, что повышает эффективность промышленной безопасности при эксплуатации. 2 з.п. ф-лы.

Формула изобретения RU 2 607 004 C1

1. Способ оперативного контроля технического состояния газовых и газоконденсатных скважин, включающий проведение стандартных газодинамических исследований скважин на стационарных режимах фильтрации с построением зависимости устьевых параметров давления и температуры и давления на забое скважины от расхода газа, контроль соответствия величины фиксируемых в процессе эксплуатации устьевых параметров величине параметров, определяемой зависимостью, построенной по результатам газодинамических исследований при текущем расходе газа, отличающийся тем, что осуществляют контроль давления в затрубном пространстве скважины с помощью датчика давления, установленного на скважине и по показаниям которого с заданным шагом квантования, по барометрической формуле автоматизированная система управления технологическими процессами или информационно-управляющая система оперативно моделирует давление на забое скважины и сравнивает его с величиной забойного давления, определяемой зависимостью, построенной по результатам газодинамических исследований при текущем расходе газа, и если при текущем расходе величина забойного давления постепенно снижается и становится меньше показателя, определяемого зависимостью, построенной по результатам газодинамических исследований с учетом поправки на снижение пластового давления, автоматизированная система управления технологическими процессами выдает сообщение оператору о том, что продуктивность скважины снижается по причине формирования песчаной пробки на забое и требуется снизить расход газа, а если величина потерь давления в стволе скважины, определяемая как разность забойного и устьевого давлений растет и становится выше показателя газодинамических исследований при текущем расходе газа, автоматизированная система управления технологическими процессами выдает сообщение о том, что увеличилось количество воды в продукции скважины и требуется проведение геофизических исследований скважины, а если температура на устье скважины опускается ниже температуры гидратообразования при текущем устьевом давлении, наблюдается рост забойного давления с одновременным снижением устьевого давления и/или расхода газа, автоматизированная система управления технологическими процессами выдает сообщение об образовании в стволе скважины газовых гидратов и необходимости немедленной подачи на забой ингибитора гидратообразования.

2. Способ по п. 1, отличающийся тем, что оперативное моделирование давления на забое скважины и его динамики осуществляют, используя результаты фактических измерений расхода газа, производимых с заданным шагом квантования, например, по формуле: ,

где Рпл - пластовое давление,

а и b - коэффициенты фильтрационного сопротивления.

3. Способ по п. 1, отличающийся тем, что оперативное моделирование потерь давления в стволе скважины определяют из результатов фактических измерений давления на забое скважины Рз, ее характеристик и текущих параметров добываемого флюида, например, по формуле:

,

где ,

,

D - внутренний диаметр фонтанных труб, м,

Q - дебит скважины, тыс. м3/сут,

Рз - давление на забое скважины, МПа,

Ру - давление устья фонтанных труб, МПа,

L - расстояние от устья до забоя скважины, м,

Zср - средний коэффициент сверхсжимаемости газа,

Тср - средняя по стволу скважины температура газа, К,

- средняя по стволу скважины плотность газа, кг/м3,

λ - коэффициент сопротивления труб, зависящий от числа Рейнольдса, средней скорости потока и вязкости газа.

Документы, цитированные в отчете о поиске Патент 2017 года RU2607004C1

СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВЫХ СКВАЖИН 2000
  • Кононов В.И.
  • Облеков Г.И.
  • Березняков А.И.
  • Гордеев В.Н.
  • Поляков В.Б.
  • Харитонов А.Н.
  • Забелина Л.С.
RU2202692C2
Способ определения продуктивной характеристики газовых и газоконденсатных скважин 1988
  • Гурленов Евгений Михайлович
  • Гильфанов Марат Ахматфаязович
SU1643709A1
СПОСОБ ИССЛЕДОВАНИЯ ГАЗОВЫХ СКВАЖИН ПРИ НЕСТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ 1992
  • Тищенко Василий Иванович[Ua]
RU2067664C1
US 5058012 A1, 15.10.1991
US 20090205819 A1, 20.08.2009.

RU 2 607 004 C1

Авторы

Арно Олег Борисович

Меркулов Анатолий Васильевич

Арабский Анатолий Кузьмич

Кирсанов Сергей Александрович

Гункин Сергей Иванович

Вить Геннадий Евгеньевич

Талыбов Этибар Гурбанали Оглы

Деревягин Александр Михайлович

Даты

2017-01-10Публикация

2015-11-26Подача