Изобретение относится к энергетике и холодильной технике, в частности к способу дополнительной выработки электроэнергии.
Известен способ дополнительной выработки электроэнергии с использованием абсорбционной холодильной машины, питающейся паром от ТЭЦ в межотопительный период (И.С.Бадылькес, Р.Л.Данилов. Абсорбционные холодильные машины. - М.: Пищевая промышленность. 1966. с.319).
Однако данный способ не дает решения вопроса об использовании полученного холода.
Известен способ дополнительной выработки электроэнергии за счет снабжения холодильной станции с абсорбционными холодильными машинами неиспользованным летом теплом ТЭЦ (Л.М.Розенфельд, М.С.Карнаух // Холодильная техника, 1965, №6) и рекомендацией к использованию выработанного холода в системах кондиционирования воздуха.
Однако данный способ при его внедрении потребует больших затрат на проектирование и монтаж центральной системы кондиционирования воздуха в помещениях, где она может быть применено.
Техническая задача - создание способа дополнительной выработки электроэнергии, позволяющего получить результат с возможно меньшими затратами средств.
Технический результат - повышение выработки электроэнергии ТЭЦ в межотопительный период.
Технический результат достигается тем, что произведенный в холодильной машине холод высоких параметров в совокупности с использованием летнего теплового отбора способствует снижению температуры в конденсаторе энергоблока. Предлагаемый способ осуществляется с помощью холодильной станции, состоящей из абсорбционных холодильных машин АБХМ-3000, генератор которых обогревается паром неиспользованного летнего отбора ТЭЦ, а в испарителе охлаждается часть расхода воды, поступающей из градирни в конденсатор энергоблока.
Пример 1.
В генератор холодильной машины подавали пар из ступени низкого давления теплофикационной турбины. В испаритель подавали часть расхода воды из градирни. В результате работы холодильной машины происходило снижение температуры воды в испарителе. Охлажденную в испарителе воду смешивали с основным потоком, идущим из градирни. В результате смешивания происходило снижение температуры воды, поступающей в конденсатор энергоблока в среднем на 3°С. Абсорбер и конденсатор холодильной машины охлаждали водой из оборотной системы с более эффективной вентиляторной градирней по сравнению с башенной, применяемой в системе ТЭЦ.
На чертеже дается схема, иллюстрирующая возможность снижения температуры в конденсаторе энергоблока, которая обеспечивает дополнительную выработку электроэнергии.
По линии «а» из ступени низкого давления турбины в генератор (Г) АБХМ-3000 подавали греющий пар. Из башенной градирни (Г2) насосом (H1) по линии «в» через вентиль 1 отбирали часть потока воды и подавали в испаритель (И) АБХМ-3000. Охлажденная вода из испарителя по линии «г» через вентиль 2 поступала на смешение с основным потоком воды, поступающей из градирни, и далее по линии "б" смесь двух потоков воды подавалась в конденсатор турбины. Водяной насос (Н2) обеспечивает циркуляцию воды в оборотной системе охлаждения абсорбера (А), конденсатора (КД) холодильной машины с помощью вентиляторной градирни (Г1).
Предлагаемый способ дает положительный эффект, выражающийся в повышении дополнительной выработки электроэнергии за счет совокупного воздействия неиспользованного летнего теплового отбора и снижения температуры воды, охлаждающей конденсатор турбины ТЭЦ.
название | год | авторы | номер документа |
---|---|---|---|
Способ работы воздушно-аккумулирующей газотурбинной электростанции с абсорбционной бромисто-литиевой холодильной машиной (АБХМ) | 2017 |
|
RU2643878C1 |
Комбинированная энергетическая установка с рекуперацией отходящего тепла | 2023 |
|
RU2799694C1 |
Рекуперационная энергетическая установка | 2022 |
|
RU2779349C1 |
КОМБИНИРОВАННАЯ ПАРОГАЗОВАЯ УСТАНОВКА НА БАЗЕ ТРАНСФОРМАТОРА ТЕПЛА С ИНЖЕКЦИЕЙ ПАРА В ГАЗОВЫЙ ТРАКТ | 2015 |
|
RU2607574C2 |
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ | 2023 |
|
RU2807227C1 |
СИСТЕМА ТЕПЛОХЛАДОСНАБЖЕНИЯ | 2015 |
|
RU2609266C2 |
СПОСОБ КОМБИНИРОВАННОГО ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ, ТЕПЛА И ХОЛОДА | 2009 |
|
RU2399781C1 |
СПОСОБ ТЕПЛОХЛАДОСНАБЖЕНИЯ С ПРИМЕНЕНИЕМ АБСОРБЦИОННОГО ТЕРМОТРАНСФОРМАТОРА С ДВУХСТУПЕНЧАТОЙ АБСОРБЦИЕЙ | 2020 |
|
RU2755501C1 |
Способ работы теплоэлектроцентрали | 1973 |
|
SU481707A1 |
СПОСОБ ОХЛАЖДЕНИЯ КОМПРИМИРОВАННОГО ГАЗА | 2020 |
|
RU2757518C1 |
Изобретение относится к области энергетики и холодильной техники, в частности к способу повышения выработки электроэнергии. Техническим результатом изобретения является снижение температуры в конденсаторе турбины, способствующей дополнительной выработке электроэнергии в межотопительный период. Часть охлажденной в башенной градирне воды охлаждается в испарителе абсорбционной бромистолитиевой холодильной машины и затем подмешивается к основному потоку воды, идущему из градирни на конденсатор энергоблока. Для охлаждения конденсатора и абсорбера холодильной машины используют вентиляторную градирню. 1 ил.
Способ повышения выработки электроэнергии ТЭЦ в межотопительный период с помощью холодильной станции, состоящей из абсорбционных модифицированных холодильных машин, в генератор которых подают пар из ступени низкого давления теплофикационной турбины, включает подачу части потока воды из башенной градирни системы ТЭЦ насосом через вентиль в испаритель холодильной машины, после чего охлажденную воду смешивают с основным потоком воды, который поступает из башенной градирни в конденсатор энергоблока, при этом абсорбер и конденсатор холодильной машины охлаждают водой из оборотной системы с помощью вентиляторной градирни.
Градирня | 1990 |
|
SU1795250A1 |
RU 2000449 C1, 07.09.1993 | |||
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ | 1990 |
|
RU2023170C1 |
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ | 1991 |
|
RU2008442C1 |
Теплоэлектроцентраль | 1989 |
|
SU1645571A1 |
Способ работы теплосиловой установки | 1936 |
|
SU53625A1 |
US 5535591 А, 16.07.1996 | |||
US 4866941 А, 19.09.1989. |
Авторы
Даты
2005-11-10—Публикация
2001-11-13—Подача