Основным показателем эффективности тепловых машин является коэффициент полезного действия (кпд) - отношение полезной работы к количеству тепла, выделяемого при полном сгорании топлива, затраченного на получение этой работы.
Известны паровые двигатели (паровые машины), в которых потенциальная тепловая энергия (давление) водяного пара преобразуется в механическую работу (Большая советская энциклопедия, третье издание, том 19, М.: Советская энциклопедия, 1975, стр. 219). Недостатком паровых машин является низкий кпд (от 1 до 20%).
Известны двигатели внутреннего сгорания (ДВС), в которых химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу (Большая советская энциклопедия, третье издание, том 7, М.: Советская энциклопедия, 1975, стр. 575÷577). Максимальный кпд наиболее современных ДВС (дизелей) составляет порядка 44%.
Известны тепловые машины, в которых кпд увеличивается за счет регенерации теплоты.
Задачей изобретения является повышение кпд двигателя внутреннего сгорания за счет преобразования неиспользованной в них теплоты в полезную работу.
Поставленная задача решается за счет того, что тепловая машина, состоящая из двигателя внутреннего сгорания, содержащего цилиндропоршневую группу, кривошипно-шатунный механизм, механизм газораспределения, систему топливопитания, теплообменник, установленный на корпусе двигателя; парового двигателя, содержащего цилиндропоршневую группу, кривошипно-шатунный механизм, механизм парораспределения, теплообменник-испаритель, конденсатор, установленный на выходе из цилиндров парового двигателя, насос, установленный на выходе из конденсатора, при этом теплообменник-испаритель установлен внутри выхлопной трубы двигателя внутреннего сгорания, соединен последовательно с теплообменником, установленным на корпусе двигателя внутреннего сгорания, и имеет общее с указанным теплообменником и паровым двигателем рабочее тело.
В состав тепловой машины входят два и более паровых двигателя, теплообменники-испарители которых установлены последовательно внутри выхлопной трубы двигателя внутреннего сгорания, рабочими телами которых, начиная со второго, являются хладагенты, используемые в конденсаторах предыдущих двигателей. Хладагентом для конденсатора является воздух (топливовоздушная смесь), поступающий в цилиндры двигателя внутреннего сгорания.
В состав тепловой машины входят два и более паровых двигателя, теплообменники-испарители которых установлены последовательно внутри выхлопной трубы двигателя внутреннего сгорания, рабочими телами которых, начиная со второго, являются хладагенты, используемые в конденсаторах предыдущих двигателей, а хладагентом замыкающего конденсатора является воздух, поступающий в двигатель внутреннего сгорания.
Хладагентом для конденсатора является криогенное топливо (жидкий водород), используемое в двигателе внутреннего сгорания. Двигателем внутреннего сгорания является дизель.
Сущность изобретения состоит в том, что для повышения кпд двигателей внутреннего сгорания неиспользованную в них теплоту (тепловые потери) частично преобразуют в полезную работу, используя для этих целей паровой двигатель, работающий по замкнутому циклу, для чего на корпусе ДВС и внутри его выхлопной трубы устанавливают нагревательные элементы (теплообменники), имеющие общее с паровым двигателем рабочее тело.
С целью повышения количества преобразуемой в работу теплоты, в выхлопной трубе ДВС последовательно устанавливают ряд теплообменников с различными рабочими телами и, соответственно, ряд паровых двигателей. При этом рабочими телами теплообменников (паровых двигателей), начиная со второго, являются хладагенты (рабочие тела, используемые в теплообменниках-конденсаторах) предыдущих двигателей.
Для снижения тепловых потерь в качестве хладагента для замыкающего конденсатора используют воздух, поступающий в ДВС, для чего указанный конденсатор устанавливают внутри входного канала ДВС.
На фиг.1 изображена схема тепловой машины;
на фиг.2 изображен термодинамический цикл тепловой машины;
на фиг.3 изображена схема тепловой машины;
на фиг.4 изображена зависимость кпд тепловой машины от кпд двигателей, входящих в ее состав;
на фиг.5 изображена схема тепловой машины;
на фиг.6 изображен термодинамический цикл тепловой машины;
на фиг.7 изображена схема тепловой машины;
на фиг.8 изображена схема тепловой машины.
Тепловая машина (фиг.1) состоит из двигателя внутреннего сгорания 1, в который входят: цилиндропоршневая группа, кривошипно-шатунный механизм, механизм газораспределения, теплообменник 2, установленный на корпусе ДВС, топливный насос 3; парового двигателя 4, в который входят: цилиндропоршневая группа, кривошипно-шатунный механизм, механизм парораспределения, теплообменник-испаритель 5, расположенный внутри выхлопной трубы ДВС, конденсатор 6, расположенный на выходе из рабочих цилиндров, радиатор 7, насос 8, насос 9. Рабочим телом парового двигателя является жидкость, например вода.
Работа тепловой машины осуществляется следующим образом. Топливовоздушная смесь, сгорая в цилиндрах двигателя 1, совершает механическую работу, нагревает корпус двигателя и продукты сгорания, которые удаляются в выхлопную трубу. Вода, циркулирующая в теплообменнике 2, нагревается, охлаждая корпус двигателя 1, после чего поступает в теплообменник-испаритель 5, где дополнительно нагревается и испаряется. Образовавшийся пар расширяется в цилиндрах двигателя 4, совершая механическую работу. Из цилиндров пар удаляется в конденсатор 6, где его давление и температура понижается (пар охлаждается и конденсируется), тем самым создается разрежение, необходимое для работы парового двигателя. Из конденсатора тепло через радиатор 7 отводится в атмосферу, а конденсат (вода) насосом 9 отводится в магистраль высокого давления, после чего процесс возобновляется.
На фиг.2 показан термодинамический цикл тепловой машины (фиг.1), иллюстрирующий положительный эффект, который заключается в появлении дополнительной работы L2.
Эффективность тепловой машины зависит от кпд двигателей, входящих в ее состав, и эффективности теплообменников. Коэффициент полезного действия тепловой машины (фиг.1) определяется как
где η1 - кпд двигателя внутреннего сгорания;
η2 - кпд парового двигателя;
Тхин - индикаторная температура в процессе отвода теплоты;
Тгин - индикаторная температура в процессе подвода теплоты.
Из (1) видно, что для повышения эффективности тепловой машины, наряду с повышением кпд двигателей, необходимо стремиться к уменьшению температуры выхлопных газов Тхин (температура Тгин ограничена теплотворной способностью топлива). Уменьшение Тхин может быть достигнуто использованием ряда последовательно установленных внутри выхлопной трубы ДВС теплообменников-испарителей, рабочими телами которых являются жидкости с различными температурами кипения (по мере охлаждения выхлопных газов температура кипения рабочих тел понижается).
На фиг.3 показана схема тепловой машины, в которой два теплообменника-испарителя установлены последовательно в выхлопной трубе ДВС. Рабочими телами теплообменников (паровых двигателей) являются: вода (Н2О) и декафторбутан (C4F10), имеющие при нормальных условиях температуры кипения 100 и 10°С соответственно. Декафторбутан является также хладагентом для предыдущего двигателя, что позволяет избежать тепловых потерь (отвода тепла в атмосферу) при конденсации воды.
Эффективность тепловой машины, состоящей из n двигателей, включая ДВС, определяется как
где η1 - кпд i-го двигателя.
При равенстве кпд (ηi= const) формула (2) преобразуется в (1), т.е. тепловая машина с n двигателями, по сути, эквивалентна тепловой машине с минимальным количеством (два) двигателей, имеющей теплообменник-испаритель равной эффективности. Исходя из этого, формула (1) является универсальной и позволяет оценить теоретические возможности различных машин.
На фиг.4 показана зависимость кпд тепловой машины от кпд базового ДВС ηi=0,4, кпд паровых двигателей ηi и температуры выхлопных газов Тхин (Тгин=2000 К). Представленная номограмма позволяет, задавая кпд различных паровых двигателей (ηi) и эффективности различных теплообменников (Тхин), определять кпд различных тепловых машин η. Несмотря на то что кпд существующих паровых двигателей невысокие (до 20%) в системе тепловой машины (фиг.1) их эффективность возрастает (до 30...35% и более), что является следствием исключения так называемых котловых потерь, которые составляют 10-15% (Литвин A.M. Теоретические основы теплотехники. М.: Энергия, 1964, с.210). Таким образом, как это видно из фиг.4, кпд тепловой машины может превышать кпд базового двигателя в 1,3-1,4 раза.
Более радикальным способом повышения кпд является исключение тепловых потерь в радиаторе 7 (фиг.1). Данная задача решается использованием для конденсации пара хладоресурса воздуха (топливовоздушной смеси), поступающего в цилиндры ДВС. Технически эта задача решается: либо размещением радиатора 7 внутри входного канала ДВС, либо размещением конденсатора 6 на входе в ДВС (фиг.5). В этом случае паровой двигатель практически не имеет потерь - все тепло, которое двигатель получает от ДВС (за исключением механических потерь и потерь, связанных с теплопроводностью), преобразуется в работу. Таким образом, кпд парового двигателя в системе тепловой машины (фиг.5) стремится к единице. Физически это означает, что паровой двигатель и базовый ДВС уже не являются самостоятельными двигателями, поскольку у них общие: нагреватель, холодильник и, фактически, термодинамический цикл. По существу, это принципиально новый ДВС (двигатель Письменного), тем не менее формула (1) справедлива и для этого случая с той разницей, что η2=1 (см. фиг.4).
Условный термодинамический цикл двигателя Письменного показан в T-S координатах на фиг.6. Цикл включает в себя работы ДВС и парового двигателя (LДВС и LПД соответственно). Процесс подвода тепла 2-3 определяется базовым ДВС, процесс отвода тепла 5-1 определяется паровым двигателем. Таким образом, воздействовать на величину работы можно изменяя характеристики того и другого двигателей. Способы воздействия на характеристики ДВС известны (Вукалович М.П., Новиков Н.И. Техническая термодинамика. М.: Энергия, 1968, с.376÷388). Основным способом воздействия на характеристики парового двигателя является изменение физических свойств рабочего тела. Рабочее тело должно обладать минимальной теплотой парообразования и иметь температуру фазового перехода выше, чем температура воздуха на входе в ДВС, и ниже, чем температура газа на выходе из ДВС. Однако выполнение указанного условия не всегда гарантирует высокую эффективность тепловой машины. Дело в том, что расход рабочего тела, а следовательно, и работа парового двигателя, ограничены хладоресурсом воздуха (топливовоздушной смеси), поступающего в ДВС. Увеличить расход рабочего тела через паровой двигатель, не изменяя расхода рабочего тела через замыкающий конденсатор, можно введением промежуточных ступеней (фиг.7). В этом случае количество отбираемой у выхлопных газов теплоты, несмотря на ограниченный хладоресурс воздуха, используемого в конденсаторе, увеличивается. Последнее происходит вследствие увеличения потребления теплоты паровыми двигателями.
Максимальный кпд при минимальном весе двигатель Письменного будет иметь, если в конденсаторе в качестве хладагента использовать криогенное топливо, например жидкий водород (фиг.8).
Использование в тепловой машине многоступенчатой схемы, а также криогенных топлив позволяет приблизить температуру выхлопных газов Тхин к температуре окружающего воздуха Тхmin (фиг.6), что, по существу, означает приближение линии 5-1 (фиг.6) к изотерме, а самого цикла к циклу Карно.
Наилучшим базовым ДВС для тепловой машины (при фиксированной Тгmax) является двигатель, имеющий более пологую линию 2-3 (фиг.6), приближающуюся к изотерме. Сегодня этому условию лучшим образом соответствует дизель.
Положительным эффектом предлагаемого изобретения следует считать возможность создания высокотемпературной тепловой машины с кпд, близким кпд цикла Карно, что при существующих температурах рабочих тел составляет более 80%.
название | год | авторы | номер документа |
---|---|---|---|
ПАРОГАЗОТУРБИННАЯ УСТАНОВКА | 2004 |
|
RU2272916C2 |
ПАРОГАЗОВАЯ УСТАНОВКА | 2012 |
|
RU2520762C1 |
ПАРОГАЗОТУРБИННАЯ УСТАНОВКА | 2013 |
|
RU2523087C1 |
СТЕХИОМЕТРИЧЕСКАЯ ПАРОГАЗОВАЯ УСТАНОВКА | 2017 |
|
RU2666701C1 |
УТИЛИЗАТОР ТЕПЛОВОЙ ЭНЕРГИИ | 2004 |
|
RU2284416C2 |
ПАРОТУРБИННЫЙ ДВИГАТЕЛЬ | 2005 |
|
RU2285131C1 |
СТЕХИОМЕТРИЧЕСКАЯ ПАРОГАЗОТУРБИННАЯ УСТАНОВКА | 2018 |
|
RU2671264C1 |
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2005 |
|
RU2287708C1 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ С ТУРБОХОЛОДИЛЬНОЙ УСТАНОВКОЙ НА ВХОДЕ | 2003 |
|
RU2239080C1 |
СПОСОБ РЕГУЛИРОВАНИЯ МОЩНОСТИ ГАЗОТУРБИННОЙ УСТАНОВКИ | 2006 |
|
RU2330977C1 |
Изобретение относится к двигателестроению. Тепловая машина, состоящая из двигателя внутреннего сгорания с теплообменником, установленным на корпусе двигателя, парового двигателя с теплообменником-испарителем, конденсатором, установленным на выходе из цилиндров парового двигателя, насоса, установленного на выходе из конденсатора, в ней теплообменник-испаритель установлен внутри выхлопной трубы двигателя внутреннего сгорания, соединен последовательно с теплообменником, установленным на корпусе двигателя внутреннего сгорания, и имеет общее с указанным теплообменником и паровым двигателем рабочее тело. Изобретение обеспечивает повышение кпд двигателя внутреннего сгорания. 5 з.п. ф-лы, 8 ил.
КОМБИНИРОВАННЫЙ ДВИГАТЕЛЬ ТРАНСПОРТНОГО СРЕДСТВА | 1990 |
|
RU2054562C1 |
Система принудительной подачи и нагрева воздуха | 1986 |
|
SU1575948A3 |
Комбинированная силовая установка | 1988 |
|
SU1753002A1 |
DE 3333069 A1, 21.03.1985 | |||
DE 3429727 A1, 13.02.1986 | |||
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЧНОСТИ ИНДИКАЦИИ ВРЕМЕНИ В ЭЛЕКТРОННЫХ ЧАСАХ С ПРЕРЫВИСТО ПЕРЕМЕЩАЮЩЕЙСЯ СЕКУНДНОЙ СТРЕЛКОЙ | 2009 |
|
RU2410741C1 |
Авторы
Даты
2006-02-10—Публикация
2004-08-19—Подача