Изобретение относится к металлургическому производству, а именно к способу производства конусных длинномерных полых металлических изделий горячей прокаткой из цилиндрических труб-заготовок на трубопрокатных установках с пилигримовыми и автоматическими станами с уменьшением диаметра и увеличением толщины стенки от одного конца к другому.
Известен способ производства конусных длинномерных полых или сплошных железобетонных изделий (опор осветительных столбов, опор для натяжения и поддержания силовых кабелей трамвайно-троллейбусных линий), включающий изготовление каркаса из арматуры, заливку данного каркаса бетоном, сушку и транспортировку их к месту монтажа и установки.
Недостатками данного способа являются низкая производительность, трудоемкость изготовления, повышенный брак при транспортировке и выход из строя при дорожно-транспортных происшествиях с выводом из строя линий электропередач, трамвайно-троллейбусных силовых кабелей и причинением ущерба транспортным средствам и вреда здоровью водителям транспортных средств.
Известен также способ производства конусных длинномерных полых металлических изделий, включающий развальцовку и стыковую сварку ручным или автоматическим способом нескольких трубных изделий разного диаметра и толщин стенок.
Недостатками данного способа являются низкая производительность, трудоемкость изготовления из-за стыковки трубных изделий разного диаметра и толщин стенок, нагрева и развальцовки стыкуемых изделий, сварки их ручным или автоматическим способом в кондукторах с последующей правкой. Технологический процесс изготовления данных изделий не имеет поточности, а следовательно, имеет большой разброс геометрических размеров и качественных показателей. Такие изделия не имеют художественно-эстетического вида из-за отсутствия плавных переходов от основания к вершине.
Наиболее близкими техническими решениями являются способы производства длинномерных полых цилиндрических труб диаметром 168-500 мм, длиной до 40 метров на трубопрокатных установках с пилигримовыми станами и цилиндрических труб диаметром 168-325 мм, длиной 12-15 м на трубопрокатных установках с автоматическими станами, включающий нагрев заготовок до температуры пластичности, прошивку их в станах косой прокатки, прокатку на установках с пилигримовыми и автоматическими станами с последующей порезкой на мерные длины и прокатку в редукционно-растяжных станах в цилиндрические полые металлические изделия с утолщеним стенки по концам (Ф.А.Данилов, А.З.Глейберг, В.Г.Балакин. Горячая прокатка труб, Москва, 1962 г., с.183-206 и 292-305).
Недостатки данных способов заключаются в том, что они не обеспечивают производство конусных длинномерных полых металлических изделий необходимой формы и геометрических размеров.
Целью предложенного способа является промышленное поточное производство конусных длинномерных полых металлических изделий горячей прокаткой, имеющих эстетический вид, запас прочности при значительном снижении их веса, по сравнению с цилиндрическими, и снижение их стоимости.
Поставленная цель достигается тем, что в известном способе производства конусных длинномерных полых металлических изделий горячей прокаткой, включающем нагрев заготовок до температуры пластичности, прошивку в станах косой прокатки, прокатку на установках с пилигримовыми и автоматическими станами с последующей порезкой на мерные длины и прокатку в редукционно-растяжных станах, конусные длинномерные полые металлические изделия прокатывают в редукционно-растяжных станах до момента выхода переднего конца конусного длинномерного полого металлического изделия из последней клети редукционно-растяжного стана, после выхода переднего конца конусного длинномерного полого металлического изделия из последней клети редукционно-растяжного стана валки всех клетей останавливают (тормозят), заготовку конусного длинномерного полого металлического изделия за счет реверса валков редукционно-растяжного стана выдают на входную сторону редукционно-растяжного стана, передают на шлеппер, охлаждают и передают в отделку, правят, удаляют технологическую обрезь, производят контроль и приемку готовых конусных длинномерных полых металлических изделий, расстояние от оси первой клети редукционно-растяжного стана до оси последней клети принимают равным длине конусного длинномерного полого металлического изделия за вычетом длины технологической обрези участка основания изделия и длины технологической обрези участка вершины изделия и определяют из выражения
L=l/n,
где l - длина готового изделия, мм;
l=lизд.-lнач.-lкон.,
n - количество клетей редукционно-растяжного стана, шт;
lизд. - длина конусного изделия после прокатки, мм;
lнач. - длина технологической обрези участка основания изделия, мм;
lкон. - длина технологической обрези участка вершины изделия, мм,
количество клетей редукционно-растяжного стана выбирают в зависимости от заданной конусности длинномерных полых металлических изделий и определяют из выражения
n=1+(Dmax-Dmin)/δ,
где Dmax - диаметр основания конусного длинномерного полого металлического изделия (диаметр заготовки), мм;
Dmin - диаметр вершины конусного длинномерного полого металлического изделия, мм;
δ - среднее обжатие по диаметру в рабочей клети редукционно-растяжного стана, мм;
1 - первая клеть редукционно-растяжного стана, служащая для захвата трубной заготовки, с обжатием δ=0,
одну из сторон шлеппера выполняют выше на величину, определяемую из выражения
h=h1+(Dmax-Dmin)/2,
где h1 - высота стороны шлеппера, по которой перемещается основание длинномерного полого изделия, мм,
клети редукционно-растяжного стана устанавливают в станину с шагом (расстояние между осями клетей), значение которого определяют из выражения
m=l/n,
а клети редукционно-растяжного стана выполняют трех- или четырехвалковыми.
Таким образом, заявляемый способ, впервые в мировой практике обеспечит поточное производство качественных конусных длинномерных полых металлических изделий горячей прокаткой с необходимыми (заданными) геометрическими параметрами.
Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ производства конусных длинномерных полых металлических изделий горячей прокаткой отличается от известного тем, что конусные длинномерные полые металлические изделия прокатывают в редукционно-растяжных станах до момента выхода переднего конца конусного длинномерного полого металлического изделия из последней клети редукционно-растяжного стана, после выхода переднего конца конусного длинномерного полого металлического изделия из последней клети редукционно-растяжного стана валки всех клетей останавливают (тормозят), заготовку конусного длинномерного полого металлического изделия за счет реверса валков редукционно-растяжного стана выдают на входную сторону редукционно-растяжного стана, передают на шлеппер, охлаждают и передают в отделку, правят, удаляют технологическую обрезь, производят контроль и приемку готовых конусных длинномерных полых металлических изделий, расстояние от оси первой клети редукционно-растяжного стана до оси последней клети принимают равным длине конусного длинномерного полого металлического изделия за вычетом длины технологической обрези участка основания изделия и длины технологической обрези участка вершины изделия и определяют из выражения
L=l/n,
где l - длина готового изделия, мм;
l=lизд.-lнач.-lкон.,
n - количество клетей редукционно-растяжного стана, шт;
lизд. - длина конусного изделия после прокатки, мм;
lнач. - длина технологической обрези участка основания изделия, мм;
lкон. - длина технологической обрези участка вершины изделия, мм,
количество клетей редукционно-растяжного стана выбирают в зависимости от заданной конусности длинномерных полых металлических изделий и определяют из выражения
n=1+(Dmax-Dmin)/δ,
где Dmax - диаметр основания конусного длинномерного полого металлического изделия (диаметр заготовки), мм;
Dmin - диаметр вершины конусного длинномерного полого металлического изделия;
δ - среднее обжатие по диаметру в рабочей клети редукционно-растяжного стана, мм;
1 - первая клеть редукционно-растяжного стана, служащая для захвата трубной заготовки, с обжатием δ=0,
одну из сторон шлеппера выполняют выше на величину, определяемую из выражения
h=h1+(Dmax-Dmin)/2,
где h1 - высота стороны шлеппера, по которой перемещается основание длинномерного полого изделия, мм,
клети редукционно-растяжного стана устанавливают в станину с шагом (расстояние между осями клетей), значение которого определяют из выражения
m=l/n,
а клети редукционно-растяжного стана выполняют трех- или четырехвалковыми.
Таким образом, заявляемый способ соответствует критерию изобретения "новизна".
Сравнение заявляемого решения (способа) не только с прототипом, но и с другими техническими решениями в данной области техники не позволило выявить в них признаки, отличающие заявляемое решение от прототипа, что позволяет сделать вывод о соответствии критерию "существенные отличия".
Так как аналогичного способа и оборудования в мировой практике не существует, то пример конкретного выполнения в данный период времени привести не представляется возможным. На ТПА 140 с автоматическим станом при прокатке труб размером 108×5 мм из заготовки диаметром 140 мм на 3-валковом обкатном стане была получена трубная заготовка размером 146×5 мм, которая заторможена в 12-клетевом калибровочном стане и получено конусное длинномерное полое металлическое изделие с параметрами 146×5 (основание)×10500 (длина изделия)×108×5.5 мм (вершина изделия). Таким образом, это говорит о том, что данный способ гарантирует получение качественных конусных длинномерных полых металлических изделий горячей прокаткой с заданными геометрическими параметрами на новых установках горячей прокатки (специально спроектированных и смонтированных станах горячей прокатки для массового поточного производства, необходимых в народном хозяйстве всех стран мира конусных длинномерных полых металлических изделий).
Зная геометрические размеры готового конусного длинномерного полого металлического изделия, рассчитывают (определяют) геометрические размеры цилиндрических труб (трубных заготовок). Диаметр и толщина стенки трубных заготовок должны быть равны диаметру и толщине стенки основания конусного длинномерного полого металлического изделия. Длину трубных заготовок определяют по формуле
L=lизд./μΣ,
где lизд. - длина конусного изделия после прокатки, мм;
μΣ - суммарный коэффициент вытяжки при прокатке цилиндрической трубы в конусное полое изделие в редукционно-растяжном стане.
Прокатанные на трубопрокатных установках с пилигримовыми станами трубы пилой горячей резки разрезаются на мерные длины, а на трубопрокатных установках с автоматическими станами трубы катаются мерной длины из заготовок мерной длины. Мерные трубные заготовки, в зависимости от геометрических размеров длинномерных полых металлических изделий после пилигримового или автоматического станов, подаются на редукционно-растяжные станы с трех- или четырехвалковыми клетями. Диаметр первой клети редукционно-растяжного стана равен диаметру трубной заготовки. Количество клетей редукционно-растяжного стана выбирают в зависимости от заданной конусности и длины длинномерных полых металлических изделий и определяют по формуле
n=1+(Dmax-Dmin)/δ.
Таким образом, трубные заготовки прокатывают в редукционно-растяжном стане в конусные длинномерные полые металлические изделия до момента выхода переднего конца конусного длинномерного полого металлического изделия из последней клети редукционно-растяжного стана. После выхода переднего конца конусного длинномерного полого металлического изделия из последней клети редукционно-растяжного стана валки всех клетей останавливают (тормозят), заготовку конусного длинномерного полого металлического изделия за счет реверса валков редукционно-растяжного стана выдают на входную сторону редукционно-растяжного стана, а затем лапами передают на шлеппер для охлаждения и передачи в отделку на правку, удаление технологической обрези, контроль и приемку готовых конусных длинномерных полых металлических изделий. Для равномерного вращения и снижения кривизны при охлаждении длинномерных полых металлических изделий одну из сторон шлеппера выполняют выше второй на величину
h=h1+(Dmax-Dmin)/2,
где h1 - высота стороны шлеппера, по которой перемещается основание длинномерного полого изделия, мм.
Данный способ впервые в мировой практике позволит осуществить промышленное производство качественных конусных длинномерных полых металлических изделий с необходимыми (заданными) геометрическими параметрами на трубопрокатных установках с пилигримовыми и автоматическими станами, обеспечить потребность народного хозяйства страны и производить конкурентноспособную продукцию на экспорт.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА КОНУСНЫХ ДЛИННОМЕРНЫХ ПОЛЫХ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ ГОРЯЧЕЙ ПРОКАТКОЙ | 2004 |
|
RU2275978C2 |
СПОСОБ ПРОИЗВОДСТВА КОНУСНЫХ ДЛИННОМЕРНЫХ ПОЛЫХ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ ГОРЯЧЕЙ ПРОКАТКОЙ | 2004 |
|
RU2271888C2 |
УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА КОНУСНЫХ ДЛИННОМЕРНЫХ ПОЛЫХ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ | 2013 |
|
RU2545935C2 |
СПОСОБ ПРОИЗВОДСТВА КОНУСНЫХ ДЛИННОМЕРНЫХ ПОЛЫХ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ ГОРЯЧЕЙ ПРОКАТКОЙ | 2013 |
|
RU2542135C2 |
СПОСОБ ПРОИЗВОДСТВА КОНУСНЫХ ДЛИННОМЕРНЫХ ПОЛЫХ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ ГОРЯЧЕЙ ПРОКАТКОЙ И УСТРОЙСТВА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2268796C2 |
ТРУБОПРОКАТНАЯ УСТАНОВКА С ПИЛИГРИМОВЫМИ СТАНАМИ ДЛЯ ПРОКАТКИ БЕСШОВНЫХ ГОРЯЧЕКАТАНЫХ ТРУБ ДИАМЕТРОМ ОТ 273 ДО 630 мм | 2013 |
|
RU2533614C1 |
ДОРН ДЛЯ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ДЛИННОМЕРНЫХ ПОЛЫХ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ С ПЕРИОДИЧЕСКОЙ КОНУСНОСТЬЮ В ПРОКАТНОМ СТАНЕ | 2013 |
|
RU2545937C2 |
СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ГОРЯЧЕКАТАНЫХ ГЛАДКИХ, НАРЕЗНЫХ, КОТЕЛЬНЫХ, ТОЛСТОСТЕННЫХ И ТРУБ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ ДИАМЕТРОМ ОТ 273 ДО 630 ММ НА ТРУБОПРОКАТНЫХ УСТАНОВКАХ С ПИЛИГРИМОВЫМИ СТАНАМИ | 2013 |
|
RU2564505C2 |
СПОСОБ ПОДГОТОВКИ И КАЛИБРОВКИ ВАЛКОВ ПИЛИГРИМОВЫХ СТАНОВ | 2004 |
|
RU2288060C2 |
СПОСОБ ПРОКАТКИ ТРУБ НА РЕДУКЦИОННО-РАСТЯЖНОМ СТАНЕ | 2013 |
|
RU2532610C1 |
Изобретение относится к способу производства конусных длинномерных полых металлических изделий горячей прокаткой из цилиндрических труб-заготовок на трубопрокатных установках с пилигримовыми и автоматическими станами с уменьшением диаметра и увеличением толщины стенки от одного конца к другому. Способ включает нагрев заготовок до температуры пластичности, прошивку в станах косой прокатки, прокатку на установках с пилигримовыми и автоматическими станами с последующей порезкой на мерные длины и прокатку в редукционно-растяжных станах, при этом конусные длинномерные полые металлические изделия прокатывают в редукционно-растяжных станах до момента выхода переднего конца конусного длинномерного полого металлического изделия из последней клети редукционно-растяжного стана, после выхода переднего конца конусного длинномерного полого металлического изделия из последней клети редукционно-растяжного стана валки всех клетей останавливают/тормозят, заготовку конусного длинномерного полого металлического изделия за счет реверса валков редукционно-растяжного стана выдают на входную сторону редукционно-растяжного стана, передают на шлеппер, охлаждают и передают в отделку, правят, удаляют технологическую обрезь, производят контроль и приемку готовых конусных длинномерных полых металлических изделий, расстояние от оси первой клети редукционно-растяжного стана до оси последней клети принимают равным длине конусного длинномерного полого металлического изделия за вычетом длины технологической обрези участка основания изделия и длины технологической обрези участка вершины изделия и определяют из выражения L=l/n, где l - длина готового изделия, мм; l=lизд.-lнач-lкон., n - количество клетей редукционно-растяжного стана, шт; lизд. - длина конусного изделия после прокатки, мм; lнач. - длина технологической обрези участка основания изделия, мм; lкон. - длина технологической обрези участка вершины изделия, мм, причем количество клетей редукционно-растяжного стана выбирают в зависимости от заданной конусности длинномерных полых металлических изделий и определяют из выражения n=1+(Dmax-Dmin)/δ, где Dmax - диаметр основания конусного длинномерного изделия (диаметр заготовки), мм; Dmin - диаметр вершины конусного длинномерного изделия, мм; δ - среднее обжатие по диаметру в рабочей клети редукционно-растяжного стана, мм; 1 - первая клеть редукционно-растяжного стана, служащая для захвата трубной заготовки, с обжатием δ=0, одну из сторон шлеппера выполняют выше на величину, определяемую из выражения h=h1+(Dmax-Dmin)/2, где h1 - высота стороны шлеппера, по которой перемещается основание длинномерного полого изделия, мм, клети редукционно-растяжного стана устанавливают в станину с шагом (расстоянием между осями клетей), значение которого определяют из выражения m=l/n, и клети редукционно-растяжного стана выполняют 3- или 4-валковыми. Изобретение позволяет осуществить поточное промышленное производство качественных конусных длинномерных полых металлических изделий с заданными геометрическими параметрами. 6 з.п. ф-лы.
L=l/n,
где l - длина готового изделия, мм;
l=lизд.-lнач.-lкон.,
n - количество клетей редукционно-растяжного стана, шт;
lизд. - длина конусного изделия после прокатки, мм;
lнач. - длина технологической обрези участка основания изделия, мм;
lкон. - длина технологической обрези участка вершины изделия, мм.
n=1+(Dmax-Dmin)/δ,
где Dmax - диаметр основания конусного длинномерного изделия (диаметр заготовки), мм;
Dmin - диаметр верхнего основания конусного длинномерного изделия, мм;
δ - среднее обжатие по диаметру в рабочей клети редукционно-растяжного стана, мм;
1 - первая клеть редукционно-растяжного стана, служащая для захвата трубной заготовки, с обжатием δ=0.
h=h1+(Dmax-Dmin)/2,
где h1 - высота стороны шлеппера, по которой перемещается основание длинномерного полого изделия, мм.
ДАНИЛОВ Ф.А | |||
и др | |||
Горячая прокатка труб | |||
М | |||
Металлургиздат, 1962, с.183-206, 292-305 | |||
СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ | 1999 |
|
RU2151658C1 |
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ БЕСШОВНЫХ ТОНКОСТЕННЫХ ТРУБ | 1998 |
|
RU2138348C1 |
СПОСОБ ПРОИЗВОДСТВА КОТЕЛЬНЫХ ТРУБ БОЛЬШОГО ДИАМЕТРА ИЗ СЛИТКОВ ЭШП | 1998 |
|
RU2180874C2 |
US 4798071 A, 17.01.1989 | |||
DE 3717698 A1, 14.01.1988. |
Авторы
Даты
2006-03-20—Публикация
2004-05-05—Подача