Изобретение относится к машиностроению и преимущественно к магнитным опорам вертикальных роторов быстровращающихся приборов, гироскопов, накопителей энергии, центрифуг, генераторов, турбомолекулярных насосов и подобных устройств.
Известна магнитная опора вертикального ротора, в которой на роторе расположена ферромагнитная втулка, а расположенный над ней аксиально намагниченный статорный магнит с полюсным наконечником установлен на крышке корпуса с кольцевым зазором для возможности его перемещения в горизонтальной плоскости для центровки ротора (Патент РФ №2115482). Такая магнитная опора позволяет обеспечить хорошую центровку ротора относительно крышки корпуса, но при больших весах роторов не обеспечивает необходимой радиальной жесткости и приемлемой величины давления на нижнюю опору.
Известна также магнитная опора ротора, в которой для повышения радиальной жесткости в дополнение к основному магниту применен дополнительный магнит, сила которого направлена против направления притяжения основного магнита (Патент РФ №2115481). Такая магнитная опора повышает поперечную жесткость, но увеличивает нагрузку на нижнюю опору. Кроме того, эта опора сложна при сборке и имеет большие осевые габариты, что уменьшает полезную длину ротора.
Ближайшим техническим решением к предложенному является магнитная опора, содержащая кольцевой аксиально намагниченный магнит с полюсным наконечником в виде кольца с радиальной полкой у торца, примыкающего к нижнему торцу магнита, и ответную ферромагнитную втулку с кольцевым радиальным выступом (Патент РФ №2054334). Это известное решение повышает жесткость магнитной опоры на 8...10% и одновременно незначительно снижает давление на нижнюю опору, однако этого улучшения параметров магнитной опоры недостаточно как по подъемной силе, так и по жесткости опоры.
Техническая задача, которая решается в предлагаемом изобретении, состоит в том, чтобы уменьшить давление на нижнюю опору и повысить поперечную жесткость магнитной опоры, что позволяет повысить надежность и долговечность работы быстровращающихся роторов с магнитной опорой.
Указанный технический результат достигается тем, что магнитная опора вертикального ротора содержит кольцевой аксиально намагниченный магнит с полюсным наконечником в виде кольца, примыкающего к нижнему торцу магнита, и размещенную соосно на роторе напротив нижнего торца магнита ферромагнитную втулку с кольцевым радиальным выступом, при этом кольцевой аксиально намагниченный магнит с полюсным наконечником, выполненным с поперечным сечением в форме прямоугольника, установлен на корпусе, внутренний диаметр наконечника составляет 0,8...0,9 от внутреннего диаметра ферромагнитной втулки, а толщина наконечника составляет 0,5...1,2 от толщины верхнего торца ферромагнитной втулки.
Дополнительно между магнитом и полюсным наконечником выполнен немагнитный зазор, величина которого составляет 0,2...0,4 от высоты наконечника.
Изобретение поясняется чертежами, где на фиг.1 изображен продольный разрез магнитной опоры; на фиг.2 - вариант выполнения опоры с немагнитным зазором между магнитом и наконечником.
Магнитная опора вертикального ротора включает кольцевой аксиально намагниченный магнит 1, полюсный наконечник 2 в виде кольца с поперечным сечением в форме прямоугольника толщиной Sн и высотой Н, который примыкает к нижнему торцу магнита 1 и установлен на крышку 3 корпуса 4. Соосно с ротором 5 в его верхней части напротив нижнего торца магнита 1 установлена ферромагнитная втулка 6 с кольцевым радиальным выступом 7 толщиной Sвт. Ротор 5 опирается в нижней части на опору 8, а в верхней магнитной опоре не имеет механического контакта с неподвижными деталями крышки 3.
Размеры полюсного наконечника смещены относительно ферромагнитной втулки таким образом, что внутренний диаметр полюсного наконечника Dн составляет 0,8...0,9 от внутреннего диаметра ферромагнитной втулки Dвт, т.е. выполняется условие
а толщина наконечника составляет 0,5...1,2 от толщины верхнего торца ферромагнитной втулки. Между магнитом и наконечником может быть выполнен немагнитный зазор h, например, за счет немагнитной шайбы 9, величина которого составляет 0,2...0,4 от высоты наконечника H, т.е.
h/H=0,2...0,4
Магнитная опора работает следующим образом.
Кольцевой магнит 1 создает осесимметричное магнитное поле. Магнитный поток между полюсами магнита 1 замыкается через полюсный наконечник 2 и ферромагнитную втулку 6. Сила притяжения магнита 1, действующая через ферромагнитную втулку 6, разгружает нижнюю опору от части силы веса ротора 5 и одновременно обеспечивает верхней опоре радиальную жесткость, т.е. способность противодействовать угловым отклонениям ротора 5 относительно вертикальной оси.
В покое и при вращении ротора 5 осесимметричное магнитное поле удерживает ферромагнитную втулку 6 и связанный с ней ротор 5 в вертикальном положении, не препятствуя вращению ротора 5 относительно вертикальной оси. В случае отклонения ротора от вертикальной оси симметричность магнитного поля нарушается, что создает радиальную силу, препятствующую отклонению ротора и возвращению его в исходное положение при прекращении действия возмущающей силы. Благодаря смещению размеров наконечника относительно ферромагнитной втулки увеличивается рассеяние магнитного потока, кривая зависимости силы притяжения магнита от величины магнитного зазора становится более пологой и относительное влияние изменения зазора на давление на нижнюю опору становится меньше.
Экспериментальные исследования показали, что по сравнению с магнитной опорой, приведенной в прототипе, магнитная опора с наконечником, имеющим заявленные геометрические соотношения, уменьшает давление на опору на 20%. Однако с увеличением рассеяния уменьшается поперечная жесткость опоры. Чтобы этого не происходило, между магнитом и наконечником устанавливается немагнитный зазор, например, с помощью шайбы из немагнитного материала, причем величина этого немагнитного зазора составляет 0,2...0,4 от высоты наконечника, т.е. выполняется условие h/H=0,2...0,4. Экспериментальные исследования показали, что при применении немагнитного зазора указанной величины между магнитом и наконечником поперечная жесткость дополнительно увеличивается на 14%.
Это повышает надежность и долговечность работы быстровращающихся роторов с магнитной опорой.
название | год | авторы | номер документа |
---|---|---|---|
МАГНИТНАЯ ОПОРА ВЕРТИКАЛЬНОГО РОТОРА | 2003 |
|
RU2242288C1 |
МАГНИТНАЯ ОПОРА ВЕРТИКАЛЬНОГО РОТОРА | 2003 |
|
RU2242287C2 |
МАГНИТНАЯ ОПОРА ВЕРТИКАЛЬНОГО РОТОРА | 2004 |
|
RU2265757C1 |
ВЕРХНЯЯ МАГНИТНАЯ ОПОРА РОТОРА ГАЗОВОЙ ЦЕНТРИФУГИ | 2007 |
|
RU2355478C2 |
МАГНИТНАЯ ОПОРА ВЕРТИКАЛЬНОГО РОТОРА | 2015 |
|
RU2585002C1 |
МАГНИТНАЯ ОПОРА РОТОРА ГАЗОВОЙ ЦЕНТРИФУГИ | 1992 |
|
RU2054334C1 |
МАГНИТНАЯ ОПОРА ВЕРТИКАЛЬНОГО РОТОРА | 2006 |
|
RU2328348C1 |
ГАЗОВАЯ ЦЕНТРИФУГА | 1997 |
|
RU2115481C1 |
ВЕРХНЯЯ МАГНИТНАЯ ОПОРА РОТОРА ГАЗОВОЙ ЦЕНТРИФУГИ | 2010 |
|
RU2434685C1 |
РЕГУЛИРУЕМАЯ МАГНИТОДИНАМИЧЕСКАЯ ОПОРА ВЕРТИКАЛЬНОГО РОТОРА | 2009 |
|
RU2398977C1 |
Предложенное решение относится к машиностроению, а именно к магнитным опорам вертикальных роторов быстровращающихся приборов, гироскопов, накопителей энергии, центрифуг, генераторов, турбомолекулярных насосов и подобных устройств. Предложенная магнитная опора содержит кольцевой аксиально намагниченный магнит с полюсным наконечником в виде кольца, примыкающего к нижнему торцу магнита, и размещенную соосно на роторе напротив нижнего торца магнита ферромагнитную втулку с кольцевым радиальным выступом. Кольцевой аксиально намагниченный магнит с полюсным наконечником выполнен с поперечным сечением в форме прямоугольника и установлен на корпусе. Внутренний диаметр наконечника составляет 0,8...0,9 от внутреннего диаметра ферромагнитной втулки, а толщина наконечника составляет 0,5...1,2 от толщины верхнего торца ферромагнитной втулки. Данная конструкция устройства позволяет повысить надежность и долговечность работы быстровращающихся роторов с магнитной опорой. 2 з.п. ф-лы, 2 ил.
МАГНИТНАЯ ОПОРА РОТОРА ГАЗОВОЙ ЦЕНТРИФУГИ | 1992 |
|
RU2054334C1 |
ГАЗОВАЯ ЦЕНТРИФУГА | 1996 |
|
RU2115482C1 |
GB 1379987 А, 08.01.1975 | |||
DE 1482388 А1, 10.04.1969. |
Авторы
Даты
2006-03-27—Публикация
2004-07-15—Подача