Изобретение относится к способам очистки воды, улучшающим ее биологические свойства, а также к устройствам для осуществления упомянутых способов.
Известен способ очистки воды, включающий отвод тепла от верхних ее слоев, намораживание льда на поверхности воды не менее 1 мм, удаление из емкости незамерзшей воды с примесями, оттаивание льда и слив талой воды для ее потребления [1].
При данном способе процесс намораживания тонкого слоя льда обеспечивает очистку воды от примесей, но при этом в лед переходит достаточно большой процент имеющихся всегда в воде тяжелых изотопов водорода дейтерия и трития, так как они кристаллизуются первыми уже в интервале плюсовых температур 1,9÷4,5°С.
Поэтому вода, получаемая по этому способу, за счет циклического малообъемного процесса намораживания и оттайки накапливает повышенное количество тяжелых изотопов водорода, по отношению к исходной воде, которые, как установлено многочисленными исследованиями, оказывают повреждающее действие на все организмы животных и растений, в том числе и на человека.
Кроме того, данный способ малоэффективен по объемам намораживания льда за счет низкой теплопроводности воздуха. А так как верхние слои воды начинают кристаллизоваться только после выравнивания температуры по всему объему емкости, то для получения тонкого поверхностного слоя льда при очередном цикле необходимо понизить температуру в емкости до температуры кристаллизации, то есть до 0°С, что требует больших энергетических затрат и времени, необходимого для накопления определенного объема талой воды.
Для осуществления известного способа используют установку, состоящую из емкости для наполнения неочищенной воды, устройства теплопереноса и теплообменника, выполненного плоским по форме и расположенным над верхними слоями воды для отвода тепла через воздух с ее поверхности, вспомогательного устройства, выполненного по форме змеевика огибающего наружную боковую поверхность емкости, обеспечивающих при их совместной работе образование в верхних слоях воды тонкого слоя льда по толщине в 1 см [1].
Недостатками известного способа и установки является то, что они накапливают при кристаллизации дополнительное количество тяжелых изотопов водорода и, в связи с этим, не обеспечивают улучшение ее биологических свойств. Кроме того, намораживание и размораживание тонкого слоя льда через воздух и материал емкости малоэффективно по объемам намораживания и высокозатратное по энергетике.
Целью изобретения является создание способа и установки для получения питьевой воды, очищенной от вредных и ядовитых примесей с пониженным в ней содержанием тяжелых изотопов водорода с квазикристаллической, льдоподобной структурой, с минимальными энергозатратами.
Это достигается тем, что очистку воды от примесей (растворенных в ней органических и неорганических химических веществ, газов и пр.) осуществляют в закрытой емкости, отвод тепла осуществляют с помощью теплообменника, размещенного в верхней части емкости примерно на 1/3÷2/3 высоты столба жидкости от верхних ее слоев на равноудаленном расстоянии от центра и боковых поверхностей емкости, обеспечивающего разность температур в пределах 1÷(-1)°С, обуславливающую процесс локально-объемной кристаллизации при непрерывном постепенном многоступенчатом намораживании кристаллов льда вокруг теплообменника.
Процесс локально-объемной кристаллизации производят в замкнутом объеме на равноудаленном расстоянии от центра и боковых поверхностей емкости обеспечивающем постепенное многоступенчатое намораживание кристаллов льда по массе не более 50÷70% от общей массы исходной воды. Слив воды с примесями и слив талой воды после размораживания производят в разных по высоте емкости сечениях и по разным каналам, обеспечивающим сначала слив воды с примесями, через канал, выполненный в самом нижнем основании дна емкости, а слив талой воды после размораживания производят через канал, расположенный на 0,5÷2 см выше дна емкости. При этом процесс размораживания льда производят в два этапа. Первый, для размораживания 90÷95% льда, содержащего незначительное количество тяжелых изотопов водорода, и второй, для размораживания остатка льда, оставшегося на теплообменнике от начальной кристаллизации и содержащего большое количество тяжелых изотопов водорода, дейтерия и трития. Повышение температуры производят постепенно до состояния парообразования и конвекционного перемещения нагретых слоев пара в пределах, не превышающих 40÷80°С, что позволяет сохранять талую воду с льдоподобной структурой.
Возможны различные варианты повышения температуры в емкости: путем нагревания экранированного кабеля, намотанного на боковую поверхность емкости, микроволновыми колебаниями, путем подачи в емкость предварительно нагретой очищенной талой воды и т.п. А для сверхвысокой очистки талой воды размороженную воду пропускают через фильтр тонкой очистки, например, через цилиндрический фильтр или сферический керамический фильтр тонкой очистки под давлением.
Для случая, когда произведено полное размораживание льда в емкости и в талой воде остались тяжелые изотопы водорода, очистку талой воды от дейтерия и трития осуществляют путем повторного кратковременного намораживания льда до объемов 3÷7% от ее общей массы в условиях циркуляции воды в емкости путем ее перекачки насосом. Данный прием обеспечивает при циркуляции перемещения изотопов дейтерия и трития от удаленных мест емкости к зоне кристаллизации.
А так как дейтерий и тритий переходят в твердое метастабильное состояние уже при температуре плюс 4,5°С, то они совместно с кристаллами легкой воды кристаллизуются первыми, образуя на теплообменнике в нижней его части, находящейся в воде при температуре около 0°С, небольшой по объему слой льда, который после остановки процесса кратковременного намораживания и слива очищенной от дейтерия и трития талой воды размораживается и сливается.
На фиг.1 изображена предлагаемая установка. Она содержит раму 1, на которой крепятся все узлы и детали, теплообменник 2, выполненный по форме многоступенчатого змеевика в верхней его рабочей части по высоте примерно 1/3÷2/3 высоты емкости и расположенной внутри емкости 3 по высоте в пределах ниже 1-5 см от ее верхнего основания и симметрично относительно ее боковой поверхности с зазором, обеспечивающим возможность намораживания льда в воде вокруг змеевика до размеров, не перекрывающих при намораживании льда этих зазоров, электронагревательную катушку 4, выполненную из экранированного кабеля, обеспечивающего нагрев емкости и воздушного пространства внутри емкости вокруг льда в пределах 40÷80°С, теплоизоляционную прослойку 5, обеспечивающую теплоизоляцию процесса кристаллизации, морозильный агрегат 6 с системой его охлаждения 7, трубопровод 8 с вентилем 9 (или электроклапаном 9) для слива воды с примесями, установленный в самом нижнем сечении конического дна емкости, трубопровод 10 для слива талой воды, установленный внизу боковой поверхности емкости выше ее конического дна на 0,5÷2 см, насос 11 для перекачки и циркуляции воды под высоким давлением, фильтр 12 (в том числе цилиндрический или сферический керамический композиционный для тонкой очистки талой воды), водоотводящую трубку 13 для слива талой воды, нижнее 14 и верхнее 15 основание, термоизоляционную крышку 16, уплотнение 17, кожух 18 и электрический блок управления 19, обеспечивающий управление установкой в ручном и автоматических режимах, регулировочные нижние опоры 20, трубопровод с вентилем 21 для системы циркуляции воды и вентилем 22 для прямоточного естественного слива талой воды не перекачивая воду насосом.
Пример 1.
Емкость 3 заполняют исходной водой, открыв термоизоляционную крышку 16, до объема, определяемого верхним витком теплообменника 2, который расположен относительно верхнего основания емкости на расстоянии 2÷5 см. Вентили 9 и 22 при этом находятся в состоянии, перекрывшем сливной трубопровод 8 и 10. Затем термоизоляционную крышку 16 закрывают и включают морозильный агрегат 6 с системой его охлаждения 7. За промежуток времени 0,5÷2 часа, зависящий от исходной температуры воды и мощности агрегата 6, температура в емкости выровняется и достигнет значения 1÷(-1)°С.
Порог разности температур и барьерность его перемещения зависят от зоны кристаллизации, определяемой высотой и формой теплообменника, мощностью морозильного агрегата и временем.
Предел температуры 0°С соответствует температуре начала кристаллизации и перехода молекул воды в лед. При температуре, начиная с плюс 4,5°С, начинается кристаллизация изотопов водорода - сначала трития, а затем дейтерия, которые в ничтожно малых количествах по отношению к основной массе воды при этой температуре переходят в метастабильно-твердое неактивное состояние и при дальнейшем снижении температуры воды в емкости эти слои перемещаются по высоте емкости сверху вниз, охлажденные плотные слои опускаются вниз, а теплые слои вверх, попадая при этом в локально-объемную зону температуры кристаллизации воды, обусловленную размерами и формой теплообменника. Поэтому первый слой льда вокруг теплообменника накапливает изначально примерно 30-40% льда с изотопами водорода. Следующие слои льда, с ростом его толщины, вокруг теплообменника являются практически очищенными на 60÷70% от дейтерия и трития, а также от вредных химических веществ, находящихся в исходной воде на 100%. Примеси же при намораживании льда на теплообменнике перемещаются от зоны кристаллизации вниз, имея большую плотность, и образуют концентрированный канцерогенный и мутагенный раствор, для кристаллизации которого нужны более низкие температуры, чем 0°С. Поэтому при намораживании льда, по объему примерно равного 50÷70% от исходной массы воды, процесс кристаллизации прекращается. Оставшийся канцерогенный раствор с различного рода примесями сливают, открыв вентиль 9. После слива воды с примесями, вентиль 9 закрывают и включают систему оттайки льда, подав напряжение на электронагревательную катушку 4, выполненную из экранированного кабеля. Катушка 4 нагревает боковую поверхность емкости 3, образуя плюсовую разность температур между стенками емкости и льдом. В результате чего начинается непрерывная циркуляция потоков воздуха внутри емкости, обусловливающая при повышении температуры появление пара, который повышает теплопроводность конвекционных потоков, обеспечивающих быстрое и равномерное таяние льда. Конвекция различно нагретых слоев пара обеспечивает при таянии льда квазикристаллическую, структурированную биологически активную, без канцерогенов и мутантов, талую воду, которая собирается на дне емкости. После размораживания льда примерно на 93-95% от его общего объема талая вода сливается через трубопровод 10 путем открытия вентиля 22 или путем перекачки талой воды насосом 11 через фильтр тонкой очистки 12. Оставшиеся на теплообменнике не размороженные, первичные кристаллики льда, примерно 3-7% от общего объема льда, содержащие в себе около 40÷70% тяжелых изотопов водорода, затем также размораживают и сливают через трубопровод 8. Цикл повторяется.
Пример 2.
Все так же, как и в примере 1, за исключением того, что для более качественной очистки талой воды от тяжелых изотопов водорода лед размораживают на 100%, затем включают морозильный агрегат 6 и насос 11, обеспечивающий по трубопроводам 10 и 21 циркуляцию воды в замкнутом объеме. Циркуляция воды необходима для перемешивания воды с целью ускорения фракционного разделения талой воды от тяжелых изотопов водорода. Процесс длится недолго до появления необходимого слоя льда на теплообменнике. Затем охлажденную примерно до температуры плюс 1°С, приятную на вкус талую воду, уже очищенную от тяжелых изотопов водорода, сливают через трубопровод 10, а накопившийся лед, составляющий примерно 3÷10% от общей исходной массы талой воды с тяжелыми изотопами водорода, размораживают и сливают по трубопроводу 8.
Таким образом, предлагаемый способ и установка для его осуществления позволяют очистить исходную воду от растворенных в ней канцерогенных и мутагенных веществ и газов, а также существенно уменьшить содержание в ней дейтерия и трития, что в конечном итоге позволяет получать биологически активную структурированную воду.
Источники информации
1. Патент США 4799945 от 24 января 1989 г.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ ВОДЫ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2344092C2 |
СПОСОБ ОЧИСТКИ ВОДЫ И АППАРАТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2393996C1 |
СПОСОБ И СИСТЕМА ОЧИСТКИ ВОДЫ | 2012 |
|
RU2496720C2 |
АППАРАТ ДЛЯ ОЧИСТКИ ВОДЫ | 2009 |
|
RU2432320C2 |
СПОСОБ ПОЛУЧЕНИЯ И ХРАНЕНИЯ ТАЛОЙ ВОДЫ | 2013 |
|
RU2558889C2 |
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ТАЛОЙ ВОДЫ | 2008 |
|
RU2366610C1 |
АППАРАТ ДЛЯ ОЧИСТКИ ВОДЫ | 2013 |
|
RU2550191C1 |
СПОСОБ РАЗДЕЛЕНИЯ ЛЕГКОЙ И ТЯЖЕЛОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ ВОДЫ | 2021 |
|
RU2777112C1 |
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ОЧИЩЕННОЙ ПИТЬЕВОЙ ВОДЫ | 2000 |
|
RU2208597C2 |
СПОСОБ ОЧИСТКИ ВОДЫ ПУТЕМ ЕЕ ЗАМОРАЖИВАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2548437C1 |
Изобретение может быть использовано в быту для очистки водопроводной питьевой воды, при производстве напитков, в пищевой и хлебопекарной промышленности, в медицине, для опреснения морской воды и т.п. Способ и устройство позволяют очистить исходную воду от растворимых в ней канцерогенных и мутагенных веществ и газов, а также существенно уменьшить содержание в ней тяжелых изотопов водорода, дейтерия и трития, путем фазового разделения исходной воды с примесями, методом кристаллизации вымораживанием в замкнутом объеме на чистую воду и воду с примесями. При локально-объемной, барьерно-разнотермической кристаллизации происходит вытеснение примесей по порам, закрывающейся кристаллической решетки льда, обеспечивающее после слива исходной воды с примесями и двухступенчатой оттайки льда, получение биологически активной структурированной воды. 2 н. и 18 з.п. ф-лы, 1 ил.
US 4799945 А, 24.01.1989 | |||
УСТАНОВКА ДЛЯ ОЧИСТКИ ПИТЬЕВОЙ ВОДЫ | 1997 |
|
RU2128144C1 |
СПОСОБ ОЧИСТКИ ВОДЫ ПУТЕМ ЕЕ ЗАМОРАЖИВАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2142914C1 |
СПОСОБ ПОЛУЧЕНИЯ ЦЕЛЕБНОЙ ПИТЬЕВОЙ ВОДЫ И УСТАНОВКА ВИН-4 "НАДIЯ" ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2010772C1 |
СПОСОБ УЛУЧШЕНИЯ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ ЗАМОРАЖИВАНИЕМ И ОТТАИВАНИЕМ | 2001 |
|
RU2186033C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНОЙ ПИТЬЕВОЙ ВОДЫ И УСТАНОВКА ВИН-6 ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2031085C1 |
US 6156210 A, 05.12.2000 | |||
СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНОЙ СУММЫ ТРИТЕРПЕНОВЫХ КИСЛОТ | 2006 |
|
RU2303589C1 |
Авторы
Даты
2006-04-20—Публикация
2003-02-17—Подача