СПОСОБ ИЗМЕРЕНИЯ ОБЪЕМНОЙ АКТИВНОСТИ РАДОНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2006 года по МПК G01T1/167 

Описание патента на изобретение RU2275656C1

Изобретение относится к дозиметрии и радиометрии ионизирующих излучений и может быть использовано в медицине, геологии, сейсмологии, экологии для измерения концентрации радона внутри производственных и жилых помещений, в лечебных радоновых источниках, для предсказаний землетрясений и т.п.

Средства измерения (СИ) объемной активности радона (ОАР) делятся на три основные класса:

- мгновенного действия;

- интегрального типа (для долгосрочных измерений суммарной ОАР);

- мониторного типа (для средне- и долгосрочных измерений ОАР и оценок ее изменения).

Предметом настоящего изобретения является СИ мгновенного действия, позволяющие получить оценку мгновенных значений объемной активности изотопов радона и аэрозолей в атмосфере обследуемого объекта.

На сегодняшний день разработаны и применяются СИ мгновенного действия трех основных типов на основе:

- прямого измерения радона (Rn222), так называемые радиометры радона (непосредственный анализ прокачиваемой через СИ пробы воздуха на содержание радона с помощью сцинтилляционного или полупроводникового детектора альфа-частиц);

- измерения продуктов распада радона (с предварительной операцией адсорбирования атомов радона на мерном количестве активированного угля и последующим измерении объемной активности дочерних продуктов радона в объеме угля-адсорбента).

Эти средства измерений в настоящее время являются практически единственными, с помощью которых возможно прямое определение объемной активности изотопов радона в воздухе и коэффициента радиоактивного равновесия между изотопами радона и их дочерними продуктами.

Из уровня техники известен способ измерения объемной активности радона в пробах окружающего воздуха и камера для его осуществления, содержащая проводящий цилиндрический корпус, детектор излучения с высоковольтным электродом, аэрозольный фильтр с воздушным клапаном, расположенным на фланцах, при этом корпус камеры выполнен в виде телескопических колец, соединенных фиксаторами (RU 2008694 С1, МПК 7 G 01 T 1/167, 28.02. 1994 /1/). Отбор проб воздуха в камере производится при перемещении телескопических колец. Воздух поступает через аэрозольный фильтр и выходит через воздушный клапан. Взаимное расположение телескопических элементов в рабочем положении (при измерениях) устанавливается фиксаторами, одновременно обеспечивающими герметизацию камеры и электрический контакт между проводящими внутренними поверхностями колец. Таким образом, камера работает как воздушная помпа, позволяющая сменить пробу воздуха непосредственно в точке измерения. В нерабочем состоянии камера складывается, при этом ее габариты значительно уменьшаются. Это позволяет использовать камеру в переносных радиометрах для экспресс-мониторинга радона на обследуемой территории. В рабочем положении необходимые размеры камеры в соответствии с заявляемым техническим решением устанавливаются с помощью телескопических колец и фиксаторов.

Недостатком приведенного изобретения является наличие взаимодействующих между собой перемещающихся частей, поломка которых приводит к выходу из строя устройства, а также малая надежность и недостаточно высокая достоверность измерений.

Наиболее близким по технической сущности к предлагаемому способу измерения ОАР и устройству для его осуществления можно считать радиометр, содержащий измерительную камеру с проточным каналом, средства принудительной прокачки воздуха в виде механического насоса, полупроводниковый детектор ионизирующего излучения, расположенный внутри измерительной камеры, и средства обработки и регистрации результатов измерений (Проспект фирмы Alpha NUCLEAR, Canada Series 500 alpha DOSIMETER SYSTEM, 1988 /2/).

Радиометр работает таким образом, что при его установке в помещение, в котором необходимо определить объемную активность радона, происходит заполнение проточного канала воздухом из этого помещения, поступающим в него за счет естественной диффузии или с помощью встроенного в радиометр механического насоса, применяемого для быстрого заполнения исследуемым воздухом измерительной (электроосадительной) камеры. Вместе с воздухом в электроосадительную камеру поступает радон. Под действием естественного процесса распада радон в электроосадительной камере превращается в RaA. Поверхность полупроводникового детектора имеет отрицательный потенциал по отношению к стенкам электроосадительной камеры. Атомы RaA, имеющие положительный заряд, за счет притяжения разноименных зарядов осаждаются на поверхности полупроводникового детектора, регистрирующего альфа-излучение дочерних продуктов RaA и RaC, сигнал с которого поступает на электронную схему регистрации радиометра.

Недостаток известного радиометра состоит в том, что он имеет довольно высокую нижнюю границу рабочего диапазона и, соответственно, значительную погрешность измерений.

Задачей изобретений предлагаемой группы является улучшение технических характеристик устройства и расширение технологических возможностей способа, при этом обеспечивается технический результат, который заключается в снижении нижней границы рабочего диапазона до 2 Бк/м3, получении основной относительной погрешности измерений ниже 30%, а также обеспечении временной стабильности процесса измерений.

Указанный технический результат достигается за счет того, что в отличие от известного из /2/ способа измерения объемной активности радона в газовых средах, включающего отбор пробы газа, передачу ее в измерительную камеру, содержащую полупроводниковый детектор, регистрацию альфа-излучения и спектрометрическую обработку результатов измерения, согласно предлагаемому способу до передачи в измерительную камеру проводят предварительное охлаждение пробы газа для вымораживания влаги, а металлизированную поверхность детектора охлаждают до температуры, обеспечивающей конденсацию радона. Предварительное охлаждение пробы газа проводят до температуры минус 40°С, а затем осуществляют охлаждение ее в измерительной камере до температуры, близкой к минус 65°С, например, посредством адиабатического расширения.

Кроме того, указанный технический результат достигается за счет того, что в отличие от известного устройства /2/ для измерения объемной активности радона в газовых средах, содержащего блок отбора проб газа, измерительную камеру с полупроводниковым детектором и связанный с последним блок спектрометрической обработки результатов измерения, предлагаемое устройство снабжено средством предварительного охлаждения пробы газа для вымораживания водяных паров, например, в виде камеры, и средством охлаждения поверхности полупроводникового детектора до температуры, обеспечивающей конденсацию радона. Измерительная камера выполнена с возможностью охлаждения в ней пробы газа путем адиабатического расширения.

Сущность изобретения поясняется чертежом, на котором приведена схема предлагаемого устройства.

Устройство содержит блок 1 отбора проб газа (в частном случае - воздуха), содержащий систему прокачки газа (воздуха), аэрозольный фильтр и осушитель, кроме того, в устройство входит измерительная камера 2 с полупроводниковым детектором 3 и блок 4 спектрометрической обработки результатов измерений, а также средство предварительного охлаждения пробы газа (воздуха) в виде камеры 5 вымораживания и средство 6 охлаждения поверхности полупроводникового детектора.

При осуществлении способа происходит следующее.

В блоке 1 отбора проб исследуемая проба воздуха прогоняется с помощью системы прокачки через аэрозольный фильтр и осушитель, затем поступает в охлаждаемую камеру 5, где охлаждается до минус 40°С для вымораживания остатков водяных паров. Далее исследуемая проба воздуха поступает в измерительную камеру 2, где происходит ее дальнейшее охлаждение посредством адиабатического расширения до температуры, близкой к минус 65°С, и обдувает металлизированную поверхность полупроводникового детектора 3, охлажденную до той же температуры. При этом происходит конденсация атомов радона (Rn222) на металлизированной поверхности полупроводникового детектора 3. Величина температуры от минус 62°С до минус 65°С для поверхности детектора связана с физической константой - точкой кипения радона при нормальном давлении. Эта температура обеспечивает капельное осаждение радона на металлизированной поверхности детектора. Температура для предварительного охлаждения (вымораживания) пробы воздуха может быть иной в случае изменения конструкции измерительного блока. Блок обработки результатов измерений обеспечивает регистрацию альфа-излучения радона, спектрометрическое определение ОАР, обработку и вывод данных.

В результате осуществления способа и использования предлагаемого устройства существенно повышается эффективность регистрации атомов радона полупроводниковым детектором, улучшаются метрологические характеристики устройства (диапазон измерений по нижнему пределу расширяется до 2 Бк/м3, а соответствующая ей основная относительная погрешность измерений снижается до 10%).

Похожие патенты RU2275656C1

название год авторы номер документа
РАДИОМЕТР ДЛЯ ИЗМЕРЕНИЯ ОБЪЕМНОЙ АКТИВНОСТИ ГАЗООБРАЗНЫХ НУКЛИДОВ И РАДИОАКТИВНЫХ АЭРОЗОЛЕЙ В ВОЗДУХЕ 1993
  • Кутелев А.С.
  • Лапшин В.И.
  • Шаврин Н.Ю.
RU2035053C1
РАДИОМЕТР ДЛЯ ОПЕРАТИВНОГО ИЗМЕРЕНИЯ ОБЪЕМНОЙ АКТИВНОСТИ РАДОНА, ТОРОНА И ДОЧЕРНИХ ПРОДУКТОВ ИХ РАСПАДА В ВОЗДУХЕ 1996
  • Бабушкина О.П.
  • Болотова Н.В.
  • Воронов Б.Ф.
  • Даниленко К.Н.
  • Шамолин В.М.
  • Хлобыстин П.Б.
  • Янов В.С.
RU2123192C1
Способ определения активности радионуклидов Pu в пробах аэрозолей и выпадениях 2021
  • Куницына Елена Евгеньевна
  • Фадеева Юлия Олеговна
  • Война Елена Владимировна
RU2785061C1
Интегральный радиометр радона с диэлектрическим трековым детектором 2019
  • Маренный Альберт Михайлович
  • Лукьянов Сергей Григорьевич
  • Маренный Михаил Альбертович
  • Нефедов Николай Александрович
RU2731592C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПРЕОБРАЗОВАНИЯ ПО ТОКУ БЛОКОВ ДЕТЕКТИРОВАНИЯ С ПРОТОЧНЫМИ КАМЕРАМИ ПРИ РАДИОМЕТРИЧЕСКОМ КОНТРОЛЕ РАДИОАКТИВНОЙ ГАЗОВОЙ СМЕСИ В ТЕХНОЛОГИЧЕСКИХ ВЫБРОСАХ ЯДЕРНО-ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК 2016
  • Антушевский Александр Сигизмундович
  • Мурашова Екатерина Леонидовна
  • Антипин Александр Витальевич
  • Праздников Михаил Александрович
  • Гапоненко Павел Алексеевич
  • Гасюк Сергей Геннадьевич
  • Пряничников Анатолий Георгиевич
RU2620330C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМНОЙ АЛЬФА-АКТИВНОСТИ ПЛУТОНИЯ В ТЕХНОЛОГИЧЕСКИХ СРЕДАХ ЯДЕРНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК 2014
  • Епимахов Виталий Николаевич
  • Каплиенко Андрей Владимирович
  • Олейник Михаил Сергеевич
  • Амосова Ольга Анатольевна
RU2564955C1
КАМЕРА ДЛЯ ИЗМЕРЕНИЯ ОБЪЕМНОЙ АКТИВНОСТИ РАДОНА В ПРОБАХ ОКРУЖАЮЩЕГО ВОЗДУХА 1992
  • Котляров А.А.
  • Кривашеев С.В.
RU2008694C1
СПОСОБ ИЗМЕРЕНИЯ ПЛОТНОСТИ ПОТОКА РАДОНА И ТОРОНА С ПОВЕРХНОСТИ ГРУНТА ПО АЛЬФА-ИЗЛУЧЕНИЮ 2010
  • Яковлева Валентина Станиславовна
  • Вуколов Артем Владимирович
RU2419817C1
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА 2015
  • Яковлева Валентина Станиславовна
  • Кондратьева Алла Георгиевна
  • Черепнев Максим Святославович
RU2616224C1
Способ определения активности радионуклидов в пробах объектов окружающей среды 2018
  • Куницына Елена Евгеньевна
  • Борин Дмитрий Борисович
RU2713813C2

Реферат патента 2006 года СПОСОБ ИЗМЕРЕНИЯ ОБЪЕМНОЙ АКТИВНОСТИ РАДОНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области измерений ядерных излучений. В способе производят отбор пробы газа, передачу ее в измерительную камеру, содержащую полупроводниковый детектор, регистрацию альфа-излучения и спектрометрическую обработку результатов измерения, причем до передачи пробы в измерительную камеру проводят ее предварительное охлаждение для вымораживания влаги в средстве предварительного охлаждения пробы газа, а металлизированную поверхность детектора охлаждают до температуры, обеспечивающей конденсацию радона. Техническим результатом изобретения являются повышение эффективности регистрации радона, снижение нижнего предела измерений и точность измерений. 2 н. и 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 275 656 C1

1. Способ измерения объемной активности радона в газовых средах, включающий отбор пробы газа, передачу ее в измерительную камеру, содержащую полупроводниковый детектор, регистрацию альфа-излучения и спектрометрическую обработку результатов измерения, отличающийся тем, что до передачи в измерительную камеру проводят предварительное охлаждение пробы газа для вымораживания влаги, а металлизированную поверхность детектора охлаждают до температуры, обеспечивающей конденсацию радона.2. Способ по п.1, отличающийся тем, что предварительное охлаждение пробы газа проводят до температуры минус 30-50°С, а затем осуществляют охлаждение ее в измерительной камере до температуры от минус 62 до минус 65°С посредством адиабатического расширения.3. Устройство для измерения объемной активности радона в газовых средах, содержащее блок отбора проб газа, соединенную с ним измерительную камеру, размещенный в ней полупроводниковый детектор, связанный с блоком спектрометрической обработки результатов измерения, отличающееся тем, что оно снабжено средством предварительного охлаждения пробы газа, поступившей из блока отбора проб газа, для вымораживания водяных паров, причем средство предварительного охлаждения выполнено с возможностью последующей подачи пробы газа в измерительную камеру, а также средством охлаждения поверхности полупроводникового детектора до температуры, обеспечивающей конденсацию радона.4. Устройство по п.3, отличающееся тем, что измерительная камера выполнена с возможностью охлаждения в ней пробы газа до температуры от минус 62 до минус 65°С путем адиабатического расширения.

Документы, цитированные в отчете о поиске Патент 2006 года RU2275656C1

КАМЕРА ДЛЯ ИЗМЕРЕНИЯ ОБЪЕМНОЙ АКТИВНОСТИ РАДОНА В ПРОБАХ ОКРУЖАЮЩЕГО ВОЗДУХА 1992
  • Котляров А.А.
  • Кривашеев С.В.
RU2008694C1
US 6527005 В2, 04.03.2003
Устройство для статической балансировки изделий 1985
  • Суханов Николай Яковлевич
SU1455246A1
HOWARD A.I
et all: A high-sensitivity detection system for radon in air
Nulc
Instr
and Meth
in Phys
Research
ПРИСПОСОБЛЕНИЕ ДЛЯ ПОДАЧИ УГЛЯ В ТЕНДЕР ПАРОВОЗА 1920
  • Сучков Т.Т.
SU293A1

RU 2 275 656 C1

Авторы

Краснов Владимир Александрович

Бадюль Татьяна Андреевна

Бадюль Андрей Александрович

Даты

2006-04-27Публикация

2005-01-14Подача