Изобретение относится к области защиты среды обитания человека от техногенных катастроф чрезвычайных ситуаций, вызванных концентрационным превышением взрывоопасных примесей в воздухе. К объектам защиты могут относиться как необслуживаемые персоналом технологические объемы, производственные помещения на предприятиях угледобывающей, нефтегазоперерабатывающей промышленности, так и помещения (объемы), предназначенные для постоянного или периодического пребывания человека - жилые дома, автотранспорт, городские подземные коммуникации и другие объекты.
Известное устройство /1/, позволяющее определять концентрацию взрывоопасных примесей в воздухе, содержит источник оптического излучения с непрерывным распределением спектральной плотности, например лампу накаливания или силитовый стержень (глобар), измерительную ячейку, содержащую газовую смесь - собственно объект газоанализа, и спектрофотометр. Спектрофотометрия газовой смеси по характерным полосам селективного поглощения оптического излучения позволяет определить концентрацию любой из заявленных к анализу компонент, присутствующих в измерительной ячейке.
Недостатком устройства является наличие неучтенного, неоднородного пространственного распределения компонентов в объеме, что приводит к снижению точности измерений.
Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является газоанализатор /2/, разработанный в Центре естественно-научных исследований ИОФАН, в лаборатории прикладной лазерной спектроскопии. Газоанализатор содержит источник оптического излучения с устройством для амплитудной модуляции и оптическим элементом в виде набора плоских зеркал, обеспечивающих ввод излучения в моноволокно, и оптоэлектронный преобразователь, соединенный кабелем с регистрирующим устройством.
Недостатком устройства является невозможность получения, наряду с качественными, количественных результатов анализа газовой смеси в тестируемом объеме.
Задача изобретения заключается в получении достоверных результатов при определении объемной концентрации любой заявленной к анализу компоненты в газовой смеси, заполняющей объем измерительной ячейки, а также повышение точности измерений и взрывобезопасности.
Поставленная задача решается следующим образом. В оптическом газоанализаторе, содержащем перестраиваемый по частоте полупроводниковый лазер с устройством ввода оптического излучения в волоконно-оптическую линию, измерительную ячейку и оптоэлектронный преобразователь с устройством регистрации сигнала, оптическая схема измерительной ячейки содержит вогнутое сферическое или параболическое зеркало, оптически сопряженное с выходным или входным торцом моноволокна так, что названный торец и его изображение полностью совпадают, а разделение оптического излучения, транслируемого моноволокном к измерительной ячейке и в обратном направлении к оптоэлектронному преобразователю, осуществляется посредством тонкой плоскопараллельной пластины, установленной под углом, большим, чем угол полного внутреннего отражения.
Оптический газоанализатор содержит измерительную ячейку, выполненную в виде оптического волновода - алюминиевой тонкостенной трубки с полированной внутренней поверхностью, свернутой в форме цилиндрической пружины или плоской спирали.
Предложенная структурная схема оптического газоанализатора представлена на фиг 1, на фиг.2 - другой вариант ее исполнения. В состав газоанализатора входят источник оптического излучения - полупроводниковый лазер 1 с перестраиваемой частотой и устройством ввода оптического излучения в моноволокно с торцами 2 и 3, (волоконно-оптическая линия может быть составлена из одного или двух моноволокон), датчик - измерительная ячейка, оптоэлектронный преобразователь 4, устройство для регистрации сигнала 5.
Моноволокно может быть использовано как для трансляции к измерительной ячейке зондирующего оптического излучения, введенного в его торец, так и для трансляции оптического излучения, ослабленного в результате поглощения содержащейся в газовой смеси заявленной к анализу компонентой (широкий ряд предельных и непредельных углеводородов, имеющих соответственно формулы СnН2n+2 и СnН2n), к оптоэлектронному преобразователю.
Как показано на схеме, поток оптического зондирующего излучения проходит через тонкую плоскопараллельную пластину 6, вводится в торец 2 моноволокна, выходной торец которого 3 расположен на оси вогнутого сферического или параболического зеркала 7 между фокусом и двойным фокусом так, что поток излучения, вышедший из торца моноволокна в пределах апертурного угла, отражается от вогнутой поверхности и вводится в моноволокно в обратном направлении таким образом, что торец 3 и его изображение оказываются полностью совмещеными. Далее оптическое излучение отражается от пластины 6, установленной под углом, большим, чем угол полного внутреннего отражения, и поступает на оптоэлектронный преобразователь 4, сигнал которого регистрируется устройством 5. Таким образом, весь объем измерительной ячейки, ограниченный конической поверхностью с вершиной в торце моноволокна 3 и поверхностью вогнутого зеркала 7, оказывается заполненным оптическим излучением, проходящим тестируемый объем газовой смеси дважды, в прямом и обратном направлениях. Реально диаметр моноволокна может составлять величину от 0,1 до 0,5 мм, апертурный угол около 30°, диаметр вогнутого зеркала около 100 мм. Объем измерительной ячейки, очевидно, будет определяться фокусным расстоянием зеркала. Моноволокно выполнено на основе кварцевого стекла марки КИ, обладающего приемлемым оптическим пропусканием до λmax = 4 мкм, плоскопараллельная пластина изготовлена, например, из флюорита CaF2.
Для определения концентрации, например, метана в газовой смеси метан-воздух частота полупроводникового лазера устанавливается по табулированному (справочному) значению экстремума полосы оптического поглощения связи С-Н ωx, и регистрируется сигнал оптоэлектронного преобразователя. Затем частота перестраивается так, что новое значение ω0 смещается за пределы полосы поглощения, и регистрируется второе значение сигнала. Концентрация метана определяется как разность величин зарегистрированных сигналов с коэффициентом пропорциональности, численное значение которого определяется при градуировке газоанализатора.
Оптический газоанализатор, выполненный по схеме, представленной на фиг.2, содержит два моноволокна. Объем измерительной ячейки представляет собой объем волновода 12, выполненного на основе тонкостенной металлической трубки, например из алюминия, диаметром 10...20 мм, с полированной внутренней поверхностью (на схеме показаны только входной и выходной торцы трубки) и свернутой в виде цилиндрической пружины или плоской спирали. Принцип заполнения оптическим излучением объема измерительной ячейки - многократное отражение полированной внутренней поверхностью волновода 12 любого из лучей поступающего на вход волновода 12 потока зондирующего оптического излучения из выходного торца 9 моноволокна. Оптическое излучение, прошедшее через газовую смесь, заполняющую волновод 12, фокусируется объективом 13 на торец 11 моноволокна и транслируется к оптоэлектронному преобразователю 4 с регистрирующим устройством 5.
Необходимо отметить, что длина оптического пути даже для аксиального луча оптического излучения, введенного в волновод 12, может в 10 и более раз превышать длину этого волновода. Увеличение оптического пути для каждого луча потока оптического излучения, с учетом равномерного заполнения объема волновода излучением, позволяет определять даже «следовые» концентрации заявленной к анализу компоненты в газовой смеси, заполняющей объем волновода. Следует отметить также минимальные требования к настройке оптической системы измерительной ячейки предлагаемого газоанализатора.
Источники информации
1. Гладышев А.В., Беловолов М.И. и др. Непрерывно перестраиваемый диодный лазер на длину волны 1,52 мкм для целей газоанализа. Квантовая электроника, т.35. (3), с.241-245.
2. Березин А.Г., Ершов О.В., Шаповалов Ю.П. Мобильный высокочувствительный детектор метана на основе диодного лазера ближнего ИК-диапазона. Квантовая электроника, т.33 (8), 2003, с.721-724 (прототип).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛ СО И CO В ГАЗООБРАЗНОЙ СРЕДЕ И УСТРОЙСТВО ДЛЯ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛ СО И CO В ГАЗООБРАЗНОЙ СРЕДЕ | 2008 |
|
RU2384836C1 |
ДИСТАНЦИОННЫЙ ОПТИЧЕСКИЙ АБСОРБЦИОННЫЙ ЛАЗЕРНЫЙ ГАЗОАНАЛИЗАТОР | 2019 |
|
RU2714527C1 |
КР-газоанализатор | 2021 |
|
RU2755635C1 |
СПОСОБ ОПТИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОМПОНЕНТА, ПРЕИМУЩЕСТВЕННО СЕРОВОДОРОДА, И ЕГО КОНЦЕНТРАЦИИ В ПОТОКЕ ГАЗА | 2016 |
|
RU2626389C1 |
Оптическая система формирования и наведения лазерного излучения | 2018 |
|
RU2699944C1 |
Мобильный лидарный газоанализатор | 2023 |
|
RU2804263C1 |
Низкотемпературный сублиллиметровый спектрометр | 1990 |
|
SU1763902A1 |
Оптическая система формирования и наведения лазерного излучения | 2016 |
|
RU2663121C1 |
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ НАНОВИБРАЦИЙ ПОВЕРХНОСТИ | 2011 |
|
RU2461803C1 |
Способ дистанционного измерения концентрации газов в атмосфере | 2017 |
|
RU2679455C1 |
Изобретение относится к области защиты среды обитания человека от техногенных катастроф чрезвычайных ситуаций. В оптическом газоанализаторе, содержащем перестраиваемый по частоте полупроводниковый лазер с устройством ввода оптического излучения в моноволоконно-оптическую линию, измерительную ячейку и оптоэлектронный преобразователь с устройством регистрации сигнала, оптическая схема измерительной ячейки содержит вогнутое сферическое или параболическое зеркало, оптически сопряженное с выходным (входным) торцом моноволокна так, что названный торец и его изображение полностью совпадают, а разделение оптического излучения, транслируемого моноволокном к измерительной ячейке и в обратном направлении к оптоэлектронному преобразователю, осуществляется посредством тонкой плоскопараллельной пластины, установленной под углом, большим, чем угол полного внутреннего отражения. Техническим результатом является получение достоверных результатов при определении объемной концентрации любой заявленной к анализу компоненты в газовой смеси, заполняющей объем измерительной ячейки, а также повышение точности измерений и достижение взрывобезопасности. 1 с. и 1 з.п. ф-лы, 2 ил.
БЕРЕЗИН А.Г | |||
и др | |||
Мобильный высокочувствительный детектор метана на основе диодного лазера ближнего ИК-диапазона | |||
Квантовая электроника | |||
Способ сопряжения брусьев в срубах | 1921 |
|
SU33A1 |
ИНФРАКРАСНЫЙ ГАЗОАНАЛИЗАТОР | 1991 |
|
RU2022249C1 |
ЛАЗЕРНЫЙ ГАЗОАНАЛИЗАТОР ДЛЯ ИЗМЕРЕНИЯ СОДЕРЖАНИЯ ФТОРИСТОГО ВОДОРОДА В ГАЗОВОЙ СРЕДЕ | 1990 |
|
RU1795737C |
JP 9113445 А, 02.05.1997 | |||
US 5173749 А, 22.12.1993 | |||
DE 19634191 А1, 27.02.1997. |
Авторы
Даты
2006-06-20—Публикация
2004-12-21—Подача