СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕРВАЛА ЗАКОЛОННОГО ПЕРЕТОКА ЖИДКОСТИ В НАГНЕТАТЕЛЬНОЙ СКВАЖИНЕ Российский патент 2006 года по МПК E21B47/10 

Описание патента на изобретение RU2289689C2

Изобретение относится к нефтедобыче и может быть использовано для определения интервалов заколонного перетока жидкости в нагнетательной скважине

Известны способы определения интервалов заколонного движения жидкости в нагнетательных скважинах путем регистрации серии термограмм вдоль ее ствола (см., например, а.с. №665082, №933964, №1476119, патент RU №2121572, МПК Е 21 В 47/10, 47/06)

Недостатком известных способов является то, что неизвестен интервал времени, в течение которого следует проводить регистрацию термограмм, следовательно, имеются затруднения в определении интервала заколонного движения жидкости

Эти недостатки частично устранены в другом известном способе определения заколонного движения жидкости в нагнетательной скважине, принятом за прототип (патент RU №2171373 от 27.07.2001, МПК Е 21 В 47/10). В способе по прототипу выполняют регистрацию серии термограмм вдоль ее ствола в расчетный промежуток времени после прекращения закачки при герметичном устье, а об интервале заколонного перетока жидкости судят по замедленному темпу восстановления температуры в системе скважина - пласт. Регистрацию серии термограмм проводят в промежуток времени 4-40 минут после прекращения закачки.

Недостатки прототипа следующие:

- промежуток времени 4-40 минут не является оптимальным для точного определения интервала заколонного перетока жидкости, о чем свидетельствует практика,

- об интервале заколонного перетока жидкости судят по замедленному темпу восстановления температуры, тогда как для точного определения нужного интервала необходимо сравнить темпы восстановления температуры на соседних участках системы скважина - пласт.

Задачей изобретения является создание способа определения интервала заколонного перетока жидкости в нагнетательной скважине, лишенного указанных недостатков.

Техническим результатом, достигаемым при использовании предложенного изобретения, является повышение точности определения интервала заколонного перетока жидкости.

Указанный технический результат достигается тем, что в способе определения интервала заколонного перетока жидкости в нагнетательной скважине, включающем регистрацию серии термограмм после прекращения закачки и определение интервала заколонного перетока по замедленному темпу восстановления температуры, согласно предложенному осуществляют регистрацию серий термограмм в интервалах времени 10-45 и 240-360 минут после прекращения закачки, при этом по термограммам, зарегистрированным в интервале времени 10-45 минут, судят о наличии заколонного перетока путем сравнения темпов восстановления температуры с учетом как их увеличения, так и их замедления на разных участках системы скважина - пласт, а по термограммам, зарегистрированным в интервале времени 240-360 минут, определяют интервал заколонного перетока как участок с замедленным темпом восстановления температуры или как участок между интервалами поглощения закачиваемой жидкости неперфорированными пластами, если замедленный темп восстановления имеет место во всей зоне перфорации.

Осуществление регистрации термограмм в течение двух интервалов времени (10-45 и 240-360 минут после прекращения закачки) позволяет более точно определять интервалы перетока жидкости, поскольку дает информацию как о наличии перетока в зоне перфорации (регистрация термограмм в интервале 10-45 минут), так и о наличии поглощения закачиваемой жидкости неперфорированными интервалами (регистрация термограмм в интервале 240-360 минут).

Повышению точности также способствует выполнение двух операций вместо одной вначале судят о наличии заколонного перетока путем сравнения темпов восстановления температуры с учетом как увеличения темпов, так и их замедления на разных участках в системе скважина - пласт в промежутке времени 10-45 минут, а затем определяют участок и с замедленным темпом восстановления температуры в промежутке 240-360 минут, которые являются интервалами поглощения закачиваемой жидкости неперфорированными участками, что является дополнительным подтверждением наличия перетока выше или ниже интервала закачки. Наблюдается уход жидкости в породы коллектора выше и ниже интервалов перфорации, что приводит к их охлаждению, в связи с чем темп восстановления температуры этих охлажденных участков является замедленным.

На чертеже представлена термограмма, где кривые иллюстрируют: ГК - измерение естественной гамма-активности пород, 1 - фон (остановка), 2 - процесс закачки, 3 - измерение через 15 минут, 4 - измерение через 45 минут, 5 - измерение через 360 минут

Осуществляется предложенный способ следующим образом. В скважине, находившейся перед исследованием в бездействии, производят замер фоновой температуры. Затем осуществляют пуск под закачку и проводят измерение температуры в зоне фильтра в процессе закачки жидкости через фильтр. Затем подачу жидкости отключают, герметизируют устье и после прекращения закачки проводят регистрацию серии термограмм вдоль ствола скважины, охватывая диапазон выше и ниже фильтра. Исследования проводят в два этапа. На первом этапе рассматриваются замеры в интервале времени 15-45 минут. Поскольку на замер уходит около 30 минут, то выполнить более двух замеров в этом интервале времени технологически невозможно. По результатам термограмм, осуществленных в интервале времени 10-45 минут, судят о наличии заколонного перетока жидкости путем сравнения темпов восстановления температуры с учетом как увеличенных темпов, так и замедленных темпов на соседних участках в системе скважина - пласт. Степень длительности нарушения теплового поля в скважине закачкой (промывкой), спуском сважинного прибора и т.д. зависит от длительности и интенсивности воздействия. Ориентировочно можно считать, что время расформирования температурного поля, обусловленного технологическим нарушением, превышает длительность воздействия в 2-3 раза (Р.А.Валиулин, А.Ш.Рамазанов. Термические исследования при компрессорном освоении нефтяных скважин. Уфа, 1992). Так как для выхода на режим скважины и ликвидации последствий возмущения необходимо 2 часа (120 минут), то второй этап проводится в интервале времени 240-360 минут. В этом интервале на фоне практически восстановившегося теплового поля в скважине (условно постоянная статическая температура) против непринимающих участков выделяются неперфорированные участки, характеризующиеся зонами охлаждения и замедленным темпом восстановления температуры, и замер в данном интервале времени позволяет выделить интервал перетока жидкости в выше и ниже лежащие неперфорированные пласты. При этом по результатам термограмм интервал перетока определяют как участок с замедленным темпом восстановления температуры или, если замедленный темп восстановления имеет место во всей зоне перфорации, как участок между интервалами поглощения закачиваемой жидкости неперфорированными пластами.

Данный способ исследования можно применять в ситуации, когда скважину исследуют в процессе закачки, а потом останавливают и проводят исследования. Поскольку скважина под закачкой может находиться месяцами, то в режиме остановки через 240-360 минут восстановления температурного поля в скважине не происходит. Однако благодаря замеру в этом интервале времени получают более точное представление о поглощающих пластах в интервале перетока.

Проводились измерения, например, в нагнетательной скважине №1418 Западно-Ноябрьского месторождения в Западной Сибири в зоне фильтра, а также выше и ниже этой зоны. Колонна диаметром 146×127 мм, НКТ-73. Зумф на глубине 2620 м, фильтр в интервале 2572-2578 м, башмак НКТ - 2525 м. Измерение температуры выполнялось автономным прибором Гео-2 диаметром 36 мм.

На кривой 1 показаны результаты измерений фоновой температуры. На кривой 2 представлены результаты измерений температуры в процессе закачки жидкости. Дальнейшие измерения температуры (кривые 3-5) выполнялись после прекращения закачки жидкости при герметичном устье скважины. Для привязки к разрезу выполнено также измерение естественной гамма-активности пород (кривая ГК).

Как видно из анализа кривых, наблюдается охлаждение не только интервала пласта, залегающего против фильтра, но и интервалов выше и ниже залегающих пластов коллекторов (2545-2547, 2550,0 и 2555,5-2591,5 м). Это свидетельствует о том, что имеют место разрушения цементного камня и заколонный переток с уходом жидкости вверх до глубины 2545 м и вниз до глубины 2591,5 м. Этот интервал резко отличается замедленным темпом восстановления температуры по сравнению с выше и ниже расположенными участками.

Особенно же сильный заколонный переток жидкости имеет место в интервале перетока на участке скважины 2545-2572 м с самым замедленным темпом восстановления температуры.

Похожие патенты RU2289689C2

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАКОЛОННОГО ДВИЖЕНИЯ ЖИДКОСТИ В НАГНЕТАТЕЛЬНОЙ СКВАЖИНЕ 2000
  • Назаров В.Ф.
  • Валиуллин Р.А.
  • Вильданов Р.Р.
  • Гареев Ф.З.
  • Закиров А.Ф.
  • Зайцев Д.Б.
  • Минуллин Р.М.
  • Мухамадеев Р.С.
RU2171373C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАКОЛОННОГО ПЕРЕТОКА ЖИДКОСТИ В СКВАЖИНЕ В ИНТЕРВАЛАХ ПЕРЕКРЫТЫХ НАСОСНО-КОМПРЕССОРНЫМИ ТРУБАМИ 2014
  • Мухамадиев Рамиль Сафиевич
  • Баженов Владимир Валентинович
  • Имаев Алик Исламгалеевич
  • Валиуллин Рим Абдуллович
  • Шарафутдинов Рамиль Фаизырович
  • Исмагилов Фанзат Завдатович
RU2569391C1
Способ определения заколонного перетока жидкости в добывающих и нагнетательных скважинах 2023
  • Шарафутдинов Рамиль Фаизырович
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллинович
  • Давлетшин Филюс Фанизович
  • Имаев Алик Исламгалеевич
  • Баженов Владимир Валентинович
RU2810775C1
Способ определения заколоченных перетоков в нагнетательных скважинах 1988
  • Валиуллин Рим Абдуллович
  • Парфенов Анатолий Иванович
  • Рамазанов Айрат Шайхуллович
SU1573155A1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАКОЛОННОГО ПЕРЕТОКА ЖИДКОСТИ МЕТОДОМ АКТИВНОЙ ТЕРМОМЕТРИИ В СКВАЖИНАХ, ПЕРЕКРЫТЫХ НАСОСНО-КОМПРЕССОРНЫМИ ТРУБАМИ 2015
  • Шарафутдинов Рамиль Фаизырович
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллинович
  • Закиров Марат Финатович
  • Шарипов Артем Маратович
RU2585301C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАКОЛОННОГО ПЕРЕТОКА ЖИДКОСТИ В ДЕЙСТВУЮЩИХ СКВАЖИНАХ 2023
  • Шарафутдинов Рамиль Фаизырович
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллинович
  • Давлетшин Филюс Фанизович
  • Имаев Алик Исламгалеевич
  • Баженов Владимир Валентинович
RU2806672C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ РАБОТАЮЩИХ ИНТЕРВАЛОВ, ПРОФИЛЯ ПРИТОКА В ДОБЫВАЮЩЕЙ И ПРИЕМИСТОСТИ В НАГНЕТАТЕЛЬНОЙ СКВАЖИНЕ, НАЛИЧИЯ ЗАКОЛОННЫХ ПЕРЕТОКОВ 2023
  • Шарафутдинов Рамиль Фаизырович
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллинович
  • Канафин Ильдар Вакифович
RU2811172C1
СПОСОБ ГИДРОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ НАГНЕТАТЕЛЬНЫХ СКВАЖИН 2011
  • Кременецкий Михаил Израилевич
  • Кокурина Валентина Владимировна
RU2473804C1
СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИНЫ 2009
  • Ибрагимов Наиль Габдулбариевич
  • Закиров Айрат Фикусович
  • Миннуллин Рашит Марданович
  • Вильданов Рафаэль Расимович
  • Мухамадеев Рамиль Сафиевич
RU2384698C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАКОЛОННЫХ ПЕРЕТОКОВ 2013
  • Хисамов Раис Салихович
  • Халимов Рустам Хамисович
  • Торикова Любовь Ивановна
  • Мусаев Гайса Лёмиевич
  • Билалов Исмагил Сабирович
RU2510457C1

Реферат патента 2006 года СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕРВАЛА ЗАКОЛОННОГО ПЕРЕТОКА ЖИДКОСТИ В НАГНЕТАТЕЛЬНОЙ СКВАЖИНЕ

Изобретение относится к исследованию скважин и может быть использовано для определения интервалов заколонного перетока жидкости в нагнетательной скважине. Способ включает регистрацию серии термограмм после прекращения закачки и определение интервала заколонного перетока по замедленному темпу восстановления температуры. Регистрацию серий термограмм осуществляют в интервалах времени 10-45 и 240-360 минут после прекращения закачки. О наличии заколонного перетока судят по термограммам, зарегистрированным в интервале времени 10-45 минут, путем сравнения темпов восстановления температуры с учетом как их увеличения, так и их замедления на разных участках системы скважина - пласт. Интервал заколонного перетока определяют по термограммам, зарегистрированным в интервале времени 240-360 минут после прекращения закачки как участок с замедленным темпом восстановления температуры или как участок между интервалами поглощения закачиваемой жидкости неперфорированными пластами, если замедленный темп восстановления имеет место во всей зоне перфорации. Изобретение направлено на повышение точности определения интервала заколонного перетока жидкости. 1 ил.

Формула изобретения RU 2 289 689 C2

Способ определения интервала заколонного перетока жидкости в нагнетательной скважине, включающий регистрацию серии термограмм после прекращения закачки и определение интервала заколонного перетока по замедленному темпу восстановления температуры, отличающийся тем, что осуществляют регистрацию серий термограмм в интервалах времени 10-45 и 240-360 мин после прекращения закачки, при этом о наличии заколонного перетока судят по термограммам, зарегистрированным в интервале времени 10-45 мин путем сравнения темпов восстановления температуры с учетом как их увеличения, так и их замедления на разных участках системы скважина-пласт, а интервал заколонного перетока определяют по термограммам, зарегистрированным в интервале времени 240-360 мин после прекращения закачки как участок с замедленным темпом восстановления температуры или как участок между интервалами поглощения закачиваемой жидкости неперфорированными пластами, если замедленный темп восстановления имеет место во всей зоне перфорации.

Документы, цитированные в отчете о поиске Патент 2006 года RU2289689C2

СПОСОБ ОПРЕДЕЛЕНИЯ ЗАКОЛОННОГО ДВИЖЕНИЯ ЖИДКОСТИ В НАГНЕТАТЕЛЬНОЙ СКВАЖИНЕ 2000
  • Назаров В.Ф.
  • Валиуллин Р.А.
  • Вильданов Р.Р.
  • Гареев Ф.З.
  • Закиров А.Ф.
  • Зайцев Д.Б.
  • Минуллин Р.М.
  • Мухамадеев Р.С.
RU2171373C1
Способ исследования нагнетательных скважин 1985
  • Назаров Василий Федорович
  • Байков Анвар Мавлютович
  • Дворкин Исаак Львович
  • Ершов Альберт Михайлович
  • Лукьянов Эдуард Евгеньевич
  • Орлинский Борис Михайлович
  • Осипов Александр Михайлович
  • Филиппов Александр Иванович
  • Фойкин Петр Тимофеевич
  • Юнусов Наиль Кабирович
SU1359435A1
Способ определения затрубного дви-жЕНия жидКОСТи B дЕйСТВующЕй СКВАжиНЕ 1979
  • Дворкин Исаак Львович
  • Валиуллин Рим Абдуллович
  • Филиппов Александр Иванович
  • Бикбулатов Бернард Мухаметович
  • Бровин Борис Зосимович
SU817232A1
Способ определения интервалов заколонного движения жидкости в скважине 1987
  • Назаров Василий Федорович
  • Шарафутдинов Рамиль Файзырович
  • Валиуллин Рим Абдуллович
  • Дворкин Исаак Львович
  • Булгаков Разим Бареевич
  • Фойкин Петр Тимофеевич
  • Таюпов Марат Нуриевич
  • Осипов Александр Михайлович
SU1476119A1
Способ определения затрубного движения жидкости 1978
  • Филиппов Александр Иванович
  • Рамазанов Айрат Шайхуллович
SU665082A1
Способ определения характера движения жидкости за обсадной колонной 1980
  • Валиуллин Рим Абдуллович
  • Буевич Александр Степанович
  • Филиппов Александр Иванович
  • Дворкин Исаак Львович
  • Довгополюк Иван Михайлович
  • Расторгуев Валентин Николаевич
SU933964A1
Способ определения заколоченных перетоков в нагнетательных скважинах 1988
  • Валиуллин Рим Абдуллович
  • Парфенов Анатолий Иванович
  • Рамазанов Айрат Шайхуллович
SU1573155A1
Способ исследования технического состояния скважины 1982
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллович
  • Буевич Александр Степанович
  • Дворкин Исаак Львович
  • Филиппов Александр Иванович
  • Пацков Лев Леонидович
  • Швецова Людмила Евгеньевна
  • Лиховол Георгий Дмитриевич
SU1160013A1
Способ определения интервалов заколонного движения жидкости в скважине 1987
  • Назаров Василий Федорович
  • Шарафутдинов Рамиль Файзырович
  • Валиуллин Рим Абдуллович
  • Дворкин Исаак Львович
  • Булгаков Разим Бареевич
  • Фойкин Петр Тимофеевич
  • Таюпов Марат Нуриевич
  • Осипов Александр Михайлович
SU1476119A1
Способ исследования нефтяных скважин 1979
  • Буевич Александр Степанович
  • Валиуллин Рим Абдуллович
  • Филиппов Александр Иванович
SU953196A1
СПОСОБ ИССЛЕДОВАНИЯ НАГНЕТАТЕЛЬНЫХ СКВАЖИН 1997
  • Назаров В.Ф.
  • Валиуллин Р.А.
  • Адиев Я.Р.
  • Азизов Ф.Ф.
RU2121572C1
СПОСОБ ИССЛЕДОВАНИЯ НАГНЕТАТЕЛЬНЫХ СКВАЖИН (ВАРИАНТЫ) 1998
  • Назаров В.Ф.
  • Адиев Я.Р.
  • Асмоловский В.С.
  • Валиуллин Р.А.
  • Волощук В.П.
  • Елизарьев А.П.
  • Зайцев Д.Б.
  • Ихиятдинов Т.З.
  • Коровин А.Ф.
  • Морозкин Н.Д.
  • Прытков А.Н.
  • Сулейманов Ч.Я.
RU2151866C1
US 3795142 А, 05.03.1974
Устройство для подналадки с механизмом автоматической подачи командного импульса на рабочий орган станка 1953
  • Цепляев М.В.
SU113285A1

RU 2 289 689 C2

Авторы

Пасечник Михаил Петрович

Клочан Игорь Павлович

Молчанов Евгений Петрович

Даты

2006-12-20Публикация

2004-12-24Подача