Изобретение относится к области водоочистки, в частности к процессам обеззараживания питьевой воды, используемой в пищевой промышленности и ряде ее отраслей, таких как ликеро-водочная, при выращивании семян и других.
Известна технология обеззараживания питьевой воды различными способами, в том числе введением в нее хлора, озоно-воздушной смеси, пучка ускоренных электронов, насыщением жидкими и газообразными компонентами /Л.А.Кульский. «Теоретические основы и технология кондиционирования воды», Киев, 1983 г./.
Обычно в упомянутых процессах подача реагентов как жидких, так и газообразных в обеззараживаемую воду осуществляют путем инжекции. Основной недостаток такой подачи заключается в низкой эффективности использования реагентов.
Известен способ очистки воды, включающий ее хлорирование, либо озонирование /RU 2098359. 1997/. Недостатками способа является то, что реагент распределяется по объему воды неравномерно, часть реагента не используется и, попадая в окружающую среду, загрязняет ее.
Известна система для обеззараживания воды, содержащая дозирующую установку, напорный и реагентный коллектор, а также гидроакустический излучатель /RU 2125973, 1990/. Недостатками описанной системы является низкая эффективность очистки воды и невозможность быстрой замены гидроакустических излучателей в случае их выхода из строя.
Наиболее близким по технической сущности и достигаемому результату являются способ радиационно-химической обработки жидкостей и устройство для его осуществления (патент РФ №2076001, приор. 04.05.95, бюл. №9, 27.03.97), в котором обеззараживание воды производят воздействием на нее ускоренными электронами с введением озоно-воздушной смеси.
К недостаткам данного способа относится необходимость введения со стороны газов-реагентов (кислорода, озона), а также возможность выхода в атмосферу озона как неиспользованного, так и появившегося в процессе облучения электронами. И то, и другое ухудшают энергетические и экологические показатели установки.
Для исключения выброса озоно-воздушной смеси в атмосферу, уменьшения энергетических затрат и улучшения экологических показателей в способе обеззараживания воды, включающем обработку ее ускоренными электронами и введение озоно-воздушной смеси, обработку воды производят совместным воздействием на нее пучков ускоренных электронов, создаваемых ускорителем электронов перпендикулярно потоку акустических колебаний в режиме кавитации, создаваемых с помощью гидроакустического излучателя и подаваемой в воду озоно-воздушной смесью, в качестве которой используют смесь, образующуюся в результате реакции ионизации электронов, создаваемых в ускорителе, и пропущенную через резонаторную камеру гидроакустического излучателя для ее диспергирования и равномерного распределения по всему объему обрабатываемой воды, при этом гидроакустический излучатель установлен таким образом, чтобы акустический поток был ориентирован в направлении движения воды, при этом гидроакустический излучатель находится в затопленном виде и давление воды, создаваемое нагнетающим насосом на входе в излучатель, составляет 3-5 атм, а степень разряжения в резонаторной камере гидроакустического излучателя 0,7-0,9 атм, причем интенсивность кавитации составляет 3-5 Вт/см2, а мощность дозы на поверхности воды при работе ускорителя электронов составляет 0,2-0,3 кГр/сек.
Обеззараживание воды при этом происходит за счет совместного воздействия на нее пучков ускоренных электронов, создаваемых ускорителем электронов перпендикулярно потоку акустических колебаний от гидроакустического излучателя в режиме кавитации и подаваемой в воду озоно-воздушной смесью, в качестве которой используют смесь, образующуюся в реакции ионизации электронов, создаваемых в ускорителе, и пропущенную через резонаторную камеру гидроакустического излучателя для ее диспергирования и равномерного распределения по всему объему обрабатываемой воды, при этом гидроакустический излучатель установлен таким образом, чтобы акустический поток был ориентирован в направлении движения воды. Все это позволяет снизить мощность дозы электронов на поверхности воды и значительно повысить эффект обеззараживания воды, исключить каталитическую очистку озоно-воздушной смеси и использование вакуумного насоса при всасывании озоно-воздушной смеси в камеру обеззараживания. Применение гидроакустического излучателя и исключение выброса озоно-воздушной смеси в атмосферу позволяют снизить капитальные и энергетические затраты и улучшить экологические показатели.
На чертеже представлена установка для осуществления заявленного способа. Установка включает следующие элементы:
1 - ускоритель электронов; 2 - гидроакустический излучатель; 3 - всасывающий штуцер резонаторной камеры гидроакустического излучателя; 4 - камера обеззараживания воды; 5 - входная труба для подачи обрабатываемой воды; 6 - труба для слива обеззараженной воды; 7 - воронка с трубопроводом для всасывания озоно-воздушной смеси; 8 - выходной патрубок для подачи воды к нагнетающему насосу; 9 - нагнетающий насос; 10 - трубопровод для подачи воды под давлением на вход в гидроакустический излучатель.
Представленная схема может быть использована для обеззараживания воды. Различные реагенты /например, озоно-воздушная смесь/ затягиваются в резонаторные камеры гидроакустического излучателя за счет разряжения, создаваемого потоком воды под давлением. Озоно-воздушная смесь попадает в акустическое кавитационное поле, создаваемое излучателем, диспергируется на мельчайшие пузырьки, значительно увеличивая поверхность контакта этих пузырьков с ускоренными электронами, что приводит к большему эффекту обеззараживания воды. Создающиеся в акустическом поле вторичные эффекты /кавитация, пульсация, микро- и макропотоки, градиенты скорости и давления/ способствуют равномерному распределению продиспергированного реагента по всему объему обеззараживаемой воды и устранению застойных зон.
Практическая реализация предлагаемого способа приводит к упрощению технологического цикла обеззараживания воды с одновременным повышением конечного эффекта.
Представленная на чертеже установка работает следующим образом. Исходная вода попадает через входную трубу 5 в камеру обеззараживания 4, затем через выходной патрубок 8 поступает в нагнетающий насос 9 и по трубопроводу для подачи воды под давлением 10 поступает в гидроакустический излучатель 2, одновременно включается ускоритель электронов, который создает пучок ускоренных электронов, направленных перпендикулярных потоку воды. При возбуждении в камере 4 акустических колебаний в гидроакустическом излучателе создается разрежение 0,7-0,9 атм. (0,7-0,9 кг/см2, 0,7·105-0,9·105 Па), причем интенсивность кавитации составляет 3-5 Вт/см2, за счет которого озоно-воздушная смесь через воронку с трубопроводом 7 всасывается в резонаторные камеры гидроакустического излучателя 2. Мощность дозы электронов на поверхности воды составляла 0,2 кГр/сек. Содержание озона в смеси было равно 3 мг/л. Интенсивность кавитации при работе гидроакустического излучателя составила 3 Вт/см2, а частота колебаний (основная гармоника) - 7 кГц. Совместное использование указанных воздействий приводило к полному обеззараживанию воды, сливаемой затем, после окончания обработки через трубу слива 6.
Экспериментальная проверка обеззараживания воды показала, что предлагаемый способ обеспечивает высокий процент летальности тест-организмов, исключает каталитическую очистку озоно-воздушной смеси и выброс в атмосферу озоно-воздушной смеси.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2466099C2 |
СПОСОБ ОБЕЗЗАРАЖИВАНИЯ ЗЕРНОВОГО СЫРЬЯ | 2013 |
|
RU2539731C1 |
СПОСОБ ОЧИСТКИ ВОДЫ | 2000 |
|
RU2165891C1 |
Способ кондиционирования водных растворов | 2017 |
|
RU2651197C1 |
СПОСОБ ОЧИСТКИ ВОДЫ | 2007 |
|
RU2333154C1 |
Способ предобработки осадков сточных вод | 2022 |
|
RU2799368C1 |
Вихревое соноплазмохимическое устройство | 2018 |
|
RU2704419C1 |
Способ смешивания жидких сред | 2016 |
|
RU2626355C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ ВОДКИ | 2003 |
|
RU2250256C2 |
СПОСОБ ОЧИСТКИ ВОДНОЙ СРЕДЫ | 2011 |
|
RU2467956C1 |
Изобретение относится к области водоочистки, в частности обеззараживания питьевой воды, используемой в пищевой промышленности. Способ обеззараживания воды заключается в совместном воздействии на воду пучков ускоренных электронов, которые направлены перпендикулярно потоку акустических колебаний в режиме кавитации, создаваемых гидроакустическим излучателем, и подаваемой в воду озоно-воздушной смесью. При этом в качестве озоно-воздушной смеси используют смесь, образующуюся в результате реакции ионизации электронов и пропущенную через резонаторную камеру гидроакустического излучателя для ее диспергирования и равномерного распределения по всему объему обрабатываемой воды, а гидроакустический излучатель установлен таким образом, чтобы акустический поток был ориентирован в направлении движения воды. Интенсивность колебаний в режиме кавитации составляет 3-5 Вт/см2, а мощность дозы на поверхности воды при работе ускорителя электронов - 0,2-0,3 кГр/сек. Технический результат - повышение степени очистки воды, исключение выброса озоно-воздушной смеси в атмосферу, уменьшение энергетических затрат. 2 з.п. ф-лы, 1 ил.
СПОСОБ РАДИАЦИОННО-ХИМИЧЕСКОЙ ОБРАБОТКИ ЖИДКОСТЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2076001C1 |
СПОСОБ ОЧИСТКИ ВОДЫ, СОДЕРЖАЩЕЙ ГАЛОГЕНИРОВАННЫЙ ЭТИЛЕН, И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1990 |
|
RU2080299C1 |
СПОСОБ ОЧИСТКИ ВОДЫ | 2000 |
|
RU2165891C1 |
СИСТЕМА ЭФФЕКТИВНОГО ОБЕЗЗАРАЖИВАНИЯ ВОДЫ | 1997 |
|
RU2125973C1 |
Устройство для оценки противоизносных свойств находящихся под давлением жидкостей | 1987 |
|
SU1472805A2 |
DE 4209056 А1, 23.09.1993. |
Авторы
Даты
2006-12-27—Публикация
2005-03-22—Подача